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Abstract

It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic
regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant
network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can
uncover substantial topological changes in network structure during biological processes such as developmental
growth. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of
noisy observations, by formulating the network estimation as a target tracking problem. We overcome the limited
number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming linear
dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square sparse
estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity of the genetic
regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount of required
observations. The smoothing improves the estimation by incorporating all observations. We track the time-varying
networks during the life cycle of the Drosophila melanogaster. The recovered networks show that few genes are
permanent, whereas most are transient, acting only during specific developmental phases of the organism.

1 Introduction

1.1 Motivation

A major challenge in systems biology today is to under-
stand the behaviors of living cells from the dynamics
of complex genomic regulatory networks. It is no more
possible to understand the cellular function from an infor-
mational point of view without unraveling the underlying
regulatory networks than to understand protein bind-
ing without knowing the protein synthesis process. The
advances in experimental technology have sparked the
development of genomic network inference methods, also
called reverse engineering of genomic networks. Most
popular methods include (probabilistic) Boolean net-
works [1,2], (dynamic) Bayesian networks [3-5], informa-
tion theoretic approaches [6-9], and differential equation
models [10-12]. A comparative study is compiled in [13].
The Dialogue on Reverse Engineering Assessment and
Methods (DREAM) project, which built a blind frame-
work for performance assessment of methods for gene
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network inference, showed that there is no single infer-
ence method that performs optimally across all data sets.
In contrast, integration of predictions from multiple infer-
ence methods shows robust and high performance across
diverse data sets [14].

These methods, however, estimate one single network
from the available data, independently of the cellular
‘themes’ or environmental conditions under which the
measurements were collected. In signal processing, it is
senseless to find the Fourier spectrum of a non-stationary
time series [15]. Similarly, time-dependent genetic data
from dynamic biological processes such as cancer pro-
gression, therapeutic responses, and developmental pro-
cesses cannot be used to describe a unique time-invariant
or static network [16,17]. Inter- and intracellular spa-
tial cues affect the course of events in these processes
by rewiring the connectivity between the molecules to
respond to specific cellular requirements, e.g., going
through the successive morphological stages during devel-
opment. Inferring a unique static network from a time-
dependent dynamic biological process results in an
‘average’ network that cannot reveal the regime-specific
and key transient interactions that cause cell biological
changes to occur. For a long time, it has been clear that

© 2014 Khan et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


mailto:bouaynaya@rowan.edu
http://creativecommons.org/licenses/by/2.0

Khan et al. EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:3

http://bsb.eurasipjournals.com/content/2014/1/3

the evolution of the cell function occurs by change in the
genomic program of the cell, and it is now clear that we
need to consider this in terms of change in regulatory
networks [16,17].

1.2 Related work

While there is a rich literature on modeling static or time-
invariant networks, much less has been done towards
inference and learning techniques for recovering topolog-
ically rewiring networks. In 2004, Luscombe et al. made
the earliest attempt to unravel topological changes in
genetic networks during a temporal cellular process or
in response to diverse stimuli [17]. They showed that
under different cellular conditions, transcription factors,
in a genomic regulatory network of Saccharomyces cere-
visiae, alter their interactions to varying degrees, thereby
rewiring the network. Their method, however, is still
based on a static representation of known regulatory
interactions. To get a dynamic perspective, they integrated
gene expression data for five conditions: cell cycle, sporu-
lation, diauxic shift, DAN damage, and stress response.
From these data, they traced paths in the regulatory net-
work that are active in each condition using a trace-back
algorithm [17].

The main challenge facing the community in the infer-
ence of time-varying genomic networks is the unavailabil-
ity of multiple measurements of the networks or multiple
observations at every instant £. Usually, one or at most a
few observations are available at each instant. This leads
to the ‘large p small #’ problem, where the number of
unknowns is smaller than the number of available obser-
vations. The problem may seem ill defined because no
unique solution exists. However, we will show that this
hurdle can be circumvented by using prior information.

One way to ameliorate this data scarcity problem is to
presegment the time series into stationary epochs and
infer a static network for each epoch separately [18,18-23].
The segmentation of the time series into stationary pieces
can be achieved using several methods including estima-
tion of the posterior distribution of the change points [19],
HMMs [20], clustering [18], detecting geometric struc-
tures transformed from time series [21], and MCMC sam-
pling algorithm to learn the times of non-stationarities
(transition times) [22,23]. The main problem with the
segmentation approach for estimating time-varying gene
networks is the limited number of time points avail-
able in each stationary segment, which is a subset of
the already limited data. Since the time-invariant net-
works are inferred in each segment using only the data
points within that segment and disregarding the rest of the
data, the resulting networks are limited in terms of their
temporal resolution and statistical power.

A semi-flexible model based on a piecewise homo-
geneous dynamic Bayesian network, where the network
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structure in each segment shares information with adja-
cent segments, was proposed in [24]. This setting allows
the network to vary gradually through segments. How-
ever, some information is lost by not considering the
entire data samples for the piecewise inference. A more
flexible model of time-varying Bayesian networks based
on a non-parametric Bayesian method for regression was
recently proposed in [25]. The non-parametric regression
is expected to enable capturing of non-linear dynamics
among genes [24]. However, a full-scale study of a time-
varying system was lacking; the approach was only tested
on an 11-gene Drosophila melanogaster network.

Full resolution techniques, which allow a time-specific
network topology to be inferred from samples mea-
sured over the entire time series, rely on model-based
approaches [26,27]. However, these methods learn the
structure (or skeleton) of the network, but not the
detailed strength of the interactions between the nodes.
Dynamic Bayesian networks (DBNs) have been extended
to the time-varying case [28-31]. Among the earliest
models is the time-varying autoregressive (TVAR) model
[29], which describes nonstationary linear dynamic sys-
tems with continuously changing linear coefficients. The
regression parameters are estimated recursively using
a normalized least-squares algorithm. In time-varying
DBNs (TVDBN), the time-varying structure and parame-
ters of the networks are treated as additional hidden nodes
in the graph model [28].

In summary, the current state-of-the-art in time-
varying network inference relies on either chopping
the time-series sequence into homogeneous subse-
quences [18-23,32-35] (concatenation of static networks)
or extending graphical models to the time-varying case
[28-31] (time modulation of static networks).

1.3 Proposed work and contributions

In this paper, we propose a novel formulation of the infer-
ence of time-varying genomic regulatory networks as a
tracking problem, where the target is a set of incoming
edges for a given gene. We show that the tracking can be
performed in parallel: there are p independent trackers,
one for each gene in the network, thus avoiding the curse
of dimensionality problem and reducing the computation
time. Assuming linear dynamics, we use a constrained
and smoothed Kalman filter to track the network connec-
tions over time. At each time instant, the connections are
characterized by their strength and sign, i.e., stimulative
or inhibitive. The sparsity constraint allows simultane-
ous signal recovery and compression, thereby reducing
the amount of required observations. The smoothing
improves the estimation by incorporating all observations
for each smoothed estimate. The paper is organized as
follows: In Section 2, we formulate the network infer-
ence problem in a state-space framework, where the target
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state, at each time point, is the network connectivity vec-
tor. Assuming linear dynamics of gene expressions, we
further show that the model can be decomposed into p
independent linear models, p being the number of genes.
Section 3 derives the LASSO-Kalman smoother, which
renders the optimal network connectivity at each time
point. The performance of the algorithm is assessed using
synthetic data in Section 4. The LASSO-Kalman smoother
is subsequently used to recover the time-varying net-
works of the D. melanogaster during the time course of its
development spanning the embryonic, larval, pupal, and
adulthood periods.

2 The state-space model

Static gene networks have been modeled using a standard
state-space representation, where the state x; represents
the gene expression values at a particular time k, and the
microarray data y; constitutes the set of noisy observa-
tions [36,37]. A naive approach to tackle the time-varying
inference problem is to generalize this representation of
time-invariant networks and augment the gene profile
state vector by the network parameters at all time instants.
This approach, however, will result in a very poor esti-
mate due to the large number of unknown parameters.
Instead, we propose to re-formulate the state-space model
as a function of the time-varying connections or parame-
ters rather than the gene expression values. In order to do
so, we need to model the time evolution of the parameters
using, for instance, prior knowledge about the biologi-
cal process. Denoting by a; the network parameters to
be estimated, the state-space model of the time-varying
network parameters can be written as

a(k + 1) = fi(a(k)) + w(k), (1)

y(k) = gi(a(k)) + v(k). (2)
The function f; models the dynamical evolution of the
network parameters, e.g., smooth evolution or abrupt
changes across time. The observation function g charac-
terizes the regulatory relationships among the genes and
can be, for instance, derived from a differential equation
model of gene expression (see Equation 8). In particu-
lar, observe that the state-space model in (1) to (2) does
not incorporate the ‘true’ gene expression values, which
have to be estimated and subsequently discarded. It only
includes the measured gene expression values with an
appropriate measurement noise term.

2.1 The observation model

We model the concentrations of mRNAs, proteins, and
other molecules using a time-varying ordinary differential
equation (ODE). More specifically, the concentration of
each molecule is modeled as a linear function of the con-
centrations of the other components in the system. The
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time-dependent coefficients of the linear ODE capture the
rewiring structure of the network. We have

p
&i(t) = —hi(Oxi()+ Y wi(0)x;(6)+biu(®) +vi(t), (3)
j=1

where i = 1,-- -, p, p being the number of genes, x;(¢) is
the expression level of gene i at time ¢, x;(¢) is the rate of
change of expression of gene i at time ¢, A; is the self degra-
dation rate, w;;(t) represents the time-varying influence of
gene j on gene i, b; is the effect of the external perturba-
tion u(t) on gene i, and v;(¢£) models the measurement and
biological noise. The goal is to infer the time-varying gene
interactions A;(%), {wij(t)}f =1 given a limited number of
measurements # < p.

To simplify the notation, we absorb the self-degradation
rate A;(¢) into the interaction parameters by letting
aij(t) = wy(t) — Ai()d;, where §; is the Kronecker
delta function. The external perturbation is assumed to be
known. The model in (3) can be simplified by introducing
a new variable

Yi(t) = x;(t) — biu(r). (4)

The discrete-time equivalent of (3) can, therefore, be
expressed as

p
yitk) =Y ay()x(k) + vi(k), i=1,---,p, k=1,...,n.

j=1
()
Writing (5) in matrix form, we obtain
y(k) = A(k) x(k) + v(k), (6)
where y(k) =[y1(k),...,y (01", AGk) = {ay(k)} is

the matrix of time-dependent interactions, x(k) =
[%1(K), ... xp(K)]T, and v(k) =[v1(k), ..., vp(K)]T.

Let 1 < my < p be the number of available observa-
tions at time k. Taking into account all m; observations,
Equation 6 becomes

Y(k) = A(k) X(k) + V(k), (7)

where Y (k), X (k), and V (k) € RP*" with the m; obser-
vations ordered in the columns of the corresponding
matrices.

The linear model in Equation 7 can be decomposed into
p independent linear models as follows:

i (k) = a; ()X (k) + vi(k), 8)

where y%(k), a’ (k), and vi (k) are the ith rows of Y (k), A(k),
and V(k), respectively. In particular, the vector a;(k) rep-
resents the set of incoming edges to gene i at time k.
Equation 8 represents the observation equation for gene i.
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2.2 Thelinear state-space model

The state equation models the dynamics of the state vec-
tor a;(k) given a priori knowledge of the system. In this
work, we assume a random walk model of the network
parameters. The random walk model is chosen for two
reasons. First, it reflects a flat prior or a lack of a priori
knowledge. Second, it leads to a smooth evolution of the
state vector over time (if the variance of the random walk
is not very high). The state space model of the incoming
edges for gene i is, therefore, given by

a;(k+ 1) = a;(k) +w;(k)

9
y;(k) = X' (k)ai(k) + vi(k), ®)

where i = 1,-- -, p, and w;(k) and v;(k) are, respectively,
the process noise and the observation noise, assumed
to be zero mean Gaussian noise processes with known
covariance matrices, Q(k) and R(k), respectively. In addi-
tion, the process and observation noises are assumed to
be uncorrelated with each other and with the state vec-
tor a;(k). In particular, we have p independent state-space
models of the form (9) fori = 1,- - - , p. Thus, the connec-
tivity matrix A can be recovered by simultaneous recovery
of its rows. Another important advantage of the represen-
tation in (9) is that the state vector a;(k) has dimension
p (the number of genes in the network) rather than p?
(the number of possible connections in the network),
thus avoiding the curse of dimensionality problem. For
instance, in a network of 100 genes, the state vector will
have dimension 100 instead of 10,000!. Though the num-
ber of genes p can be large, we show in simulations that
the performance of the Kalman tracker is unchanged for p
as large as 5,000 genes by using efficient matrix decompo-
sitions to find the numerical inverse of matrices of size p.
A graphical representation of the parallel architecture of
the tracker is shown in Figure 1.

It is well known that the minimum mean square estima-
tor, which minimizes E[ |la(k) — a(k)||3], can be obtained
using the Kalman filter if the system is observable. If
the system is unobservable, then the classical Kalman fil-
ter cannot recover the optimal estimate. In particular, it
seems hopeless to recover a;(k) € RP in (9) from an
under-determined system where m; < p. Fortunately, this
problem can be circumvented by taking into account the
fact that a;(k) is sparse. Genomic regulatory networks are
known to be sparse: each gene is governed by only a small
number of the genes in the network [11].

3 The LASSO-Kalman smoother

3.1 Sparse signal recovery

Recent studies [38,39] have shown that sparse signals can
be exactly recovered from an under-determined system of
linear equations by solving the optimization problem

min [2]lo s.t. |y — Hz|3 <, (10)
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for a sufficiently small ¢ and where the /p-norm, ||z||o,
denotes the support of z or the number of non-zero ele-
ments in z. The optimization problem in (10) can be
extended to the stochastic case as follows:

min ||2]lo s.t. Ezy[llz — 2[13] < €. (11)

Unfortunately, the above optimization problem is, in gen-
eral, NP-hard. However, it has been shown that if the
observation matrix H obeys the restricted isometry prop-
erty (RIP), then the solution of the combinatorial problem
(10) can be recovered by solving instead the convex opti-
mization problem

min [|2]1 s.t. [ly — HZ[5 <. (12)

This is a fundamental result in the emerging theory
of compressed sensing(CS) [38,39]. CS reconstructs large
dimensional signals from a small number of measure-
ments, as long as the original signal is sparse or admits a
sparse representation in a certain basis. Compressed sens-
ing has been implemented in many applications including
digital tomography [38], wireless communication [40],
image processing [41], and camera design [42]. For a
further review of CS, the reader can refer to [38,39].

Inspired by the compressed sensing approach given that
genomic regulatory networks are sparse, we formulate a
constrained Kalman objective

mginEz‘y [z — 213] st. Izl <e. (13)
The constrained Kalman objective in (13) can be seen
as the regularized version of least squares known as
least absolute shrinkage and selection operator (LASSO)
[43], which uses the /; constraint to prefer solutions
with fewer non-zero parameter values, effectively reduc-
ing the number of variables upon which the given solu-
tion is dependent. For this reason, the LASSO and its
variants are fundamental to the theory of compressed
sensing.

3.2 Constrained Kalman filtering

Constrained Kalman filtering has been mainly investi-
gated in the case of linear equality constraints of the form
Dx = d, where D is a known matrix and d is a known
vector [44]. The most straightforward method to handle
linear equality constraints is to reduce the system model
parametrization [45]. This approach, however, can only be
used for linear equality constraints and cannot be used
for inequality constraints (i.e., constraints of the form
Dx < d). Another approach is to treat the state con-
straints as perfect measurements or pseudo-observations
(i.e., no measurement noise) [46]. The perfect measure-
ment technique applies only to equality constraints as
it augments the measurement equation with the con-
straints. The third approach is to project the standard
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Figure 1 The LASSO-Kalman smoother tracker. Top row: parallel architecture of the tracker. The tracking is performed for each gene separately
;u;]A Bottom row: the LASSO-Kalman smoother: the prior estimate is predicted to
give ayx—1. The filter is updated with the observations to give the unconstrained estimate ayx. The projection operator projects this estimate to
enforce the constraint. This procedure is repeated for all time steps k = 1,
covariance of the estimate and lead to the final constrained and smoothed estimate.

---,n.Then, a forward-backward smoother is applied to reduce the

(unconstrained) Kalman filter estimate onto the con-
straint surface [44]. Though non-linear constraints can
be linearized and then treated as perfect observations,
linearization errors can prevent the estimate from con-
verging to the true value. Non-linear constraints are, thus,
much harder to handle than linear constraints because
they embody two sources of errors: truncation errors and
base point errors [47,48]. Truncation errors arise from the
lower order Taylor series approximation of the constraint,
whereas base point errors are due to the fact that the filter
linearizes around the estimated value of the state rather
than the true value. In order to deal with these errors,
iterative steps were deemed necessary to improve the con-
vergence towards the true state and better enforce the
constraint [47-49]. The number of necessary iterations is a
tradeoff between estimation accuracy and computational
complexity.

In this work, the non-linear constraint is the /;-norm of
the state vector. We adopt the projection approach, which
projects the unconstrained Kalman estimate at each step
onto the set of sparse vectors, as defined by the constraint
in (13). Denoting by a the unconstrained Kalman estimate,
the constrained estimated, &, is then obtained by solving
the following (convex) LASSO optimization:

a = argmin [|@ — al|3 + Allall;, (14)
a

where A is a parameter controlling the tradeoff between
the residual error and the sparsity. This approach is

motivated by two reasons: First, we found through
extensive simulations that the projection approach leads
to more accurate estimates than the iterative pseudo-
measurement techniques (PM) in [47-49]. Additionally,
the sparsity constraint is controlled by only one parame-
ter, namely A, whereas in PM, the number of iterations is
a second parameter that needs to be properly tuned and
presents a tradeoff between accuracy and computational
time. Second, for large-scale genomic regulatory networks
(few thousands of genes), the iterative PM approaches
render the constrained Kalman tracking problem compu-
tationally prohibitive.

3.3 The LASSO-Kalman smoother

The Kalman filter is causal, i.e., the optimal estimate at
time k depends only on past observations {y(i),i < k.
In the case of genomic measurements, all observations
are recorded and available for post-processing. By using
all available measurements, the covariance of the optimal
estimate can be reduced, thus improving the accuracy.
This is achieved by smoothing the Kalman filter using a
forward-backward approach [44]. The forward-backward
approach obtains two estimates of a(j). The first estimate,
ay, is based on the standard Kalman filter that operates
from k = 1 to k = j. The second estimate, a;, is based
on a Kalman filter that runs backward in time from k = n
back to k = j. The forward-backward approach combines
the two estimates to form an optimal smoothed estimate.
The LASSO-Kalman smoother algorithm is summarized
below (see also Figure 1).
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Algorithm 1 The LASSO-Kalman smoother algorithm

1. Initialization: Initialize the state vector @ojo = a and
state estimation error covariance Voo = 0.

2. Constrained Kalman Filtering: Fork =1,--- ,n,do

e Prediction:
(15)
(16)

Ailk—1 = Ak—1|k—1
Vigk-1 = Vi—1jk—1 + Q
e Filtering:
Ky = Vig1 Xe X} Vige-1 Hy + R~ (17)
apk = agk—1 + K — Xpagp—1),  (18)
Vigk = 4 — KiX3) V1. (19)
e Projection: Project the estimated state onto a

sparse space by solving the LASSO problem in
(14).

3. Smoothing: Smooth the estimate ay, as follows

o = Vk|kV/:+11‘k, (20)
ay, = agk + Pr(@ry1n — At11k), (21)
Viin = Vi + @k (Vigin — Vi) . (22)

4 Results and discussion

4.1 Synthetic data

In order to assess the efficacy of the proposed LASSO-
Kalman smoother in estimating the connectivity of
time-varying networks, we first perform Monte Carlo
simulations on the generated data to assess the prediction
error using the following criterion:

laij — dyll < olay] (23)
where a;; is the (i, j)th true edge value and dj; is the cor-
responding predicted edge value. The criterion in (23)
counts an error if the estimated edge value is outside
an «-vicinity of the true edge value. In our simulations,
we adopted a value of @ equal to 0.2. That is, the error
tolerance interval is +20% of the true value. The per-
centage of total correct or incorrect edges in a connec-
tivity matrix is used to determine the accuracy of the
algorithm.

We first investigate the effect of the network size on the
estimation error. We generate networks of different sizes
according to the model in (7) and calculate the prediction
error. Figure 2a shows the prediction error as a function
of the network size with a number of measurements equal
to 70% of the network size p. We observe that the network
estimation error is about constant between p = 100 to
p = 1,000 and is thus unaffected by how large the net-
work is, at least for networks of size few thousand genes.
The reason for this outcome may be the linear increase of
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the size vector with the number of genes, which is due to
the splitting of the original connectivity estimation prob-
lem (p? parameters) into p smaller problems, that can be
solved simultaneously.

We subsequently investigated the effect of the number
of measurements m on the prediction accuracy. Figure 2b
shows the prediction error as a function of the number of
observations for a network of size p = 100. The estimation
error seems to be constant up to 50 measurements then
decreases rapidly as the number of observations increase
to 100. But even for a small number of observations (10%
of the network size), the estimation error is fairly small
(less than 18%). This is an important result because in
real-world applications, the number of available obser-
vations is very limited. We believe that the reason the
error stays about constant for a small number of measure-
ments (up to 50) is due to the good initial condition that
is adopted in these simulations (see below for details on
the estimation of the initial condition). For randomly cho-
sen initial conditions, the LASSO-Kalman smoother takes
a longer time, and thus requires more observations, to
converge.

Figure 3 shows a ten-gene directed time-varying net-
work over five time points Figure 3a. For each time point,
we assume that seven observations are available. The
thickness of the edge indicates the strength of the interac-
tion. Blue edges indicate stimulative interactions, whereas
red edges indicate repressive or inhibitive interactions.
In order to show the importance of the LASSO formu-
lation and the smoothing, we track the network using
the classical Kalman filter Figure 3d, the LASSO online
Kalman filter Figure 3c, and the LASSO Kalman smoother
Figure 3b. It can be seen that the LASSO constraint is
essential in imposing the sparsity of the network, hence
significantly reducing the false positive rate. The smooth-
ing improves the estimation accuracy by reducing the
variance of the estimate.

In order to obtain a more meaningful statistical eval-
uation of the proposed LASSO-Kalman, we randomly
generated 10,000 sparse ten-gene networks evolving over
five time points. The true-positive (TP), true-negative
(TN), false-positive (FP), and false-negative (FN) rates,
and the sensitivity, specificity, accuracy, and precision are
shown in Table 1. The results reported in Table 1 do
not take into account the sign or strength of the inter-
actions, but consider only the presence or absence of
an interaction between two genes. Observe that the TP
rate of the classical Kalman filter is high because the
Kalman filter is very dense and contains many spurious
connections. This leads to an ‘artificially’ high sensitiv-
ity (97% ability to detect edges) but a very low specificity
(50% ability to detect the absence of an interaction or
sparsity) for the Kalman filter. The smoothed LASSO-
Kalman results in a sparser network, missing more edges
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than the unsmoothed LASSO-Kalman. In particular, the
FP rate of the smoothed LASSO-Kalman is higher than
its unsmoothed counterpart, but the FN rate of the
smoothed LASSO-Kalman is lower, resulting in less spu-
rious connections.

4.1.1 Estimation of A

Equation 14 introduces the penalty parameter A. This
parameter controls the sparsity of the resulting estimate,
and hence, a correct estimate of A is of paramount impor-
tance. Tibshirani [43] enumerates three methods for the
estimation of the sparsity parameter: cross-validation,
generalized cross-validation, and an analytical unbiased
estimate of risk. The first two methods assume that

the observations (X, Y) are drawn from some unknown
distribution, and the third method applies to the X-fixed
case. We adopt the second approach with a slight varia-
tion to improve the estimation accuracy. As proposed in
[43], this method is based on a linear approximation of
the LASSO estimate by the ridge regression estimator. In
this paper, instead of calculating the ridge regression esti-
mate as an approximation to the LASSO, we calculate the
actual LASSO and determine the number of its effective
parameters in order to construct the generalized cross-
validation style statistic. The sparsity of the constrained
solution is directly proportional to the value of A. If A is
small, the solution will be less sparse and if it is large, the
solution will be very sparse. At the limit, when A — o0,
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(d) Estimated time-varying network using the classical Kalman filter.

Figure 3 Tracking of a ten-gene network. The network evolved over five time points, with seven observations or measurements available at each
time point. (a) Time-varying true network evolving over five time points, with seven observations available per time point. (b) Estimated
time-varying network using the LASSO-Kalman smoother. (c) Estimated time-varying network using the LASSO-Kalman filter (no smoothing).

the solution to (14) is the zero vector. To find the optimum
value for A for the specific data at hand, we compute the
generalized cross-validation statistic for different values of
A with a coarse step size to determine the neighborhood of
the optimum value of A. Then, we perform a finer search
in this neighborhood to find the optimal A for the data.
This two-step procedure finds an accurate estimate of A
while keeping the computational cost low.

4.1.2 Estimation of the initial condition

The fact that very few observations are available (at each
time point) implies that the Kalman filter may take consid-
erable time to converge to the true solution. To make the
tracker converge faster, we generate an initial condition
based on the maximum likelihood estimate of the static
network, as proposed in [11]. This gives the Kalman filter
the ability to start from an educated guess of the initial

Table 1 Performance analysis of the smoothed LASSO-Kalman, unsmoothed LASSO-Kalman, and the classical Kalman

filter

TP (%) TN (%) FP (%) FN (%) Sensitivity Specificity Accuracy Precision
Classical Kalman 71.06 13.60 13.11 222 0.97 0.50 0.85 0.84
Unsmoothed LASSO-Kalman 80.21 11.52 432 393 0.95 0.72 091 0.94
Smoothed LASSO-Kalman 81.11 10.21 5.63 3.02 0.96 0.64 091 0.93
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state estimate, which will increase the convergence time
of the filter and hence its estimation accuracy over time.

4.2 Time-varying gene networks in Drosophila
melanogaster

A genome-wide microarray profiling of the life cycle of the
D. melanogaster revealed the evolving nature of the gene
expression patterns during the time course of its devel-
opment [50]. In this study, cDNA microarrays were used
to analyze the RNA expression levels of 4,028 genes in
wild-type flies examined during 66 sequential time peri-
ods beginning at fertilization and spanning embryonic,
larval, pupal, and the first 30 days of adulthood. Since
early embryos change rapidly, overlapping 1-h periods
were sampled; the adults were sampled at multiday inter-
vals [50]. The time points span the embryonic (samples
1 to 30; time EOlh until E2324h), larval (samples 31 to
40; time L24h until L105h), pupal (samples 41 to 58; MOh
until M96h), and adulthood (samples 59 to 66; A024h until
A30d) periods of the organism.

Costello et al. [51] normalized the Arbeitman et al.
raw data [50] using the optimized local intensity-
dependent normalization (OLIN) algorithm [52].
Details of the normalization protocol can be found at
http://www.sciencemag.org/content/suppl/2002/09/26/
297.5590.2270.DC1/ArbeitmanSOM.pdf. In their pro-
cedure, a gene may be flagged for several reasons: the
corresponding transcript not being expressed under the
considered condition, the amplification of the printed
c¢DNA was reported as ‘failed’ in the original data, or the
data is missing for technical reasons. A statistical test was
also conducted to determine if the expression of a labeled
sample is significantly above the distribution of back-
ground values. Spots with a corrected p value greater than
0.01 were considered absent (or within the distribution
of background noise). In this study, we downloaded the
Costello et al. dataset [51] and considered the unflagged
genes only, which amount to a total of 1,863 genes.

The LASSO-Kalman smoother was used to estimate 21
dynamic gene networks, one per three time points, during
the life cycle of D. melanogaster. Figure 4 shows the esti-
mated networks, where edges with absolute strength less
than 1072 were set to zero. The networks were visualized
in Cytoscape using a force-directed layout [53]. Markov
clustering [54] was used to identify clusters within each
network. Clusters containing more than 30 genes were
tested for functional enrichment using the BiNGO plu-
gin for Cytoscape [55]. The Gene Ontology term with the
highest enrichment in a particular cluster was used to
label the cluster on the network. The changing connectiv-
ity patterns are an evident indication of the evolution of
gene connectivity over time.

Figure 5 shows the evolution of the degree connectiv-
ity of each gene as a function of time. This plot helps
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visualize the hubs (high degree nodes) at each time point
and shows which genes are active during the phases of the
organism’s development. It is clear that certain genes are
mainly active during specific developmental phases (tran-
sient genes), whereas others seem to play a role during the
entire developmental process (permanent genes).

We quantified the structural properties of the temporal
network by its degree distribution and clustering coef-
ficient. We found that the degree distribution of each
snapshot network follows a power law distribution, which
indicates that the networks self-organize into a scale-free
state (a global property). The power law exponents of the
snapshot networks are plotted in Figure 6a. The clustering
coefficient, shown in Figure 6b, measures the cliquish-
ness of a typical neighborhood (a local property) or the
degree of coherence inside potential functional modules.
Interestingly, the trends (maximums and minimums) of
the degree distribution and the clustering coefficients
over time corroborate the results in [56], except for the
clustering coefficient during early embryonic period. The
LASSO-Kalman found a small clustering coefficient in
early embryonic, whereas the model-based Tesla algo-
rithm in [56] reported a high clustering coefficient for that
phase.

To show the advantages of dynamic networks over a
static network, we compared the recovered interactions
against a list of known undirected gene interactions
hosted in FlyBase (http://flybase.org/). The LASSO-
Kalman algorithm was able to recover 1,065 gene inter-
actions (ignoring all interactions smaller or equal than
1073). The static network, computed as one network
across all time periods using the algorithm in [11], recov-
ers 248 interactions. Using the segmentation approach,
we also computed four networks, where each network
uses the number of samples in each developmental phase
of the organism (embryonic, larval, pupal, and adult-
hood). The embryonic-stage network uses the 30 time
points sampled during the embryonic phase and recov-
ers 121 interactions. The larval-stage network uses nine
time points available for the larval phase and recovers
28 known interactions. The pupal-stage network uses 18
time points collected during the pupal period and recovers
125 interactions. The adult-stage network utilizes eight
time points sampled during adulthood and recovers 41
interactions. Hence, in total, the segmentation approach
recovers 315 interactions. The dynamic networks of Tesla
[56] were able to recover 96 known interactions. We
mention that, in [56], the network size was 4,028 genes,
whereas we considered a subset of 1,863 unflagged genes.
Thus, Tesla’s recovery rate is 2.4%, whereas the LASSO-
Kalman recovery rate is 57.2%. The low recovery rate
of Tesla in [56] may be due to the presence of spuri-
ous samples since the flagged genes were included in the
networks.


http://www.sciencemag.org/content/suppl/2002/09/26/297.5590.2270.DC1/ArbeitmanSOM.pdf
http://www.sciencemag.org/content/suppl/2002/09/26/297.5590.2270.DC1/ArbeitmanSOM.pdf
http://flybase.org/
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Figure 4 Snapshots of the time-varying networks at 21 time epochs during the Drosophila melanogaster development cycle. The genes
are represented as nodes and interactions as edges. Colored nodes are sets of genes enriched for Gene Ontology summarized by the indicated
terms. The nodes were distributed using a force-directed layout in Cytoscape. (a) t; to t3 (embryonic), (b) t4 to ts (embryonic), (c) t; to tg
(embryonic), (d) t1o to t1, (embryonic), (e) t13 to ti5 (embryonic), (f) t1 to t1g (embryonic), (g) tio to t1 (embryonic), (h) t2; to tra (embryonic), (i) ts
to ty7 (embryonic), (j) trg to t3g (embryonic), (k) t31 to t33 (larval), (1) tz4 to t36 (larval), (m) ts7 to t3g (larval), (n) tao to tsy (pupal), (0) ta3 to tas (pupal),
(p) t46 to tsg (pupal), (q) tag to ts1 (pupal), (r) tsy to ts4 (pupal), (s) tss to ts7 (pupal), (t) tsg to tep (@dult), (u) te to te3 (@dult).
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4.3 High-performance computing implementation

The proposed LASSO-Kalman smoother algorithm
was first tested and validated in MATLAB. Subse-
quently, a high-performance computing (HPC)-based
implementation of the algorithm was developed to allow
a large number of genes. Each HPC core computes the
interactions of one gene at a time. The communication
between the individual processes is coordinated by the
open message passing interface (open MPI). Due to the
large scale of the problem, both the Intel® C++ Compiler
and the Intel® Math Kernel Library (Intel® MKL) (Intel
Corporation, Santa Clara, CA, USA) were used on a

Linux-based platform for maximum performance. This
approach enabled an implementation that is highly effi-
cient, inherently parallel, and has built-in support for the
HPC architecture. The implementation starts by the main
MPI process spawning the child processes: each child
process is assigned an individual gene to compute, based
on the gene expression data that is made available to it
using the file system. The child process returns the com-
puted result to the main process, which then assigns the
next gene until all genes are processed. Finally, the master
process compiles the computed results in a contagious
matrix. Figure 7 summarizes the HPC implementation
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Figure 7 High-performance computing implementation.

process. The memory requirement of the algorithm,
however, is still high. At each time point, two p x p
covariance matrices must be stored and computed (the a
priori and a posteriori error covariance matrices), where
p is the number of genes. In order to alleviate the mem-
ory requirement, we used a memory mapped file, which
swaps the data between the local disk and the mem-
ory. We used the Razor II HPC system at the Arkansas
High Performance Computing Center (AHPCC) at the
University of Arkansas at Fayetteville. The AHPCC has
16 cores per node, with 32 GB of memory; each node is
interconnected using a 40-Gbps QLogic quad-data rate
QDR InfiniBand (Aliso Viejo, CA, USA). In our imple-
mentation, we were allowed to use 40 such nodes at a
given time. This implementation is scalable and supports
a larger number of genes for future investigations. Further
details of the implementation are available at http://users.
rowan.edu/~bouaynaya/EURASIP2014.

5 Conclusions

Due to the dynamic nature of biological processes, biolog-
ical networks undergo systematic rewiring in response to
cellular requirements and environmental changes. These
changes in network topology are imperceptible when esti-
mating a static ‘average’ network for all time points. The
dynamic view of genetic regulatory networks reveals the
temporal information about the onset and duration of
genetic interactions, in particular showing that few genes

are permanent players in the cellular function while oth-
ers act transiently during certain phases or ‘regimes’ of
the biological process. It is, therefore, essential to develop
methods that capture the temporal evolution of genetic
networks and allow the study of phase-specific genetic
regulation and the prediction of network structures under
given cellular and environmental conditions.

In this paper, we formulated the reverse-engineering of
time-varying networks, from a limited number of obser-
vations, as a tracking problem in a compressed domain.
Under the assumption of linear dynamics, we derived
the LASSO-Kalman smoother, which provides the opti-
mal minimum mean-square sparse estimate of the con-
nectivity structure. The estimated networks reveal that
genetic interactions undergo significant rewiring dur-
ing the developmental process of an organism such as
the D. melanogaster. We anticipate that these topolog-
ical changes and phase-specific interactions apply to
other genetic networks underlying dynamic biological
processes, such as cancer progression and therapeutic
treatment and development.

Finally, we anticipate that the rapid breakthroughs in
genomic technologies for measurement and data col-
lection will make the static representation of biological
networks obsolete and establish instead the dynamic per-
spective of biological interactions.
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