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Abstract

Linear algebraic concept of subspace plays a significant role in the recent techniques of spectrum estimation. In this
article, the authors have utilized the noise subspace concept for finding hidden periodicities in DNA sequence. With the
vast growth of genomic sequences, the demand to identify accurately the protein-coding regions in DNA is increasingly
rising. Several techniques of DNA feature extraction which involves various cross fields have come up in the recent past,
among which application of digital signal processing tools is of prime importance. It is known that coding segments have
a 3-base periodicity, while non-coding regions do not have this unique feature. One of the most important spectrum
analysis techniques based on the concept of subspace is the least-norm method. The least-norm estimator developed in this
paper shows sharp period-3 peaks in coding regions completely eliminating background noise. Comparison of proposed
method with existing sliding discrete Fourier transform (SDFT) method popularly known as modified periodogram
method has been drawn on several genes from various organisms and the results show that the proposed method has
better as well as an effective approach towards gene prediction. Resolution, quality factor, sensitivity, specificity, miss rate,

and wrong rate are used to establish superiority of least-norm gene prediction method over existing method.
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1 Introduction

It has been observed that the most significant scientific
and technological endeavour of the 21st century is mostly
related to genomics. Therefore, researchers from various
cross fields have concentrated in the field of genomic
analysis in order to extract the vast information content
hidden in it. Deoxyribonucleic acid (DNA) is the hereditary
material present in all living organisms. In eukaryotic
organisms, genes (sequences of DNA) consist of exons
(coding segments) and introns (non-coding segments).
It has been established that genetic information is stored
in the particular order of four kinds of nucleotide
bases, Adenine (a), Thymine (t), Cytosine (c) and Guanine
(g) which comprise the DNA biomolecule along with
sugar-phosphate backbone. Exons of a DNA sequence are
specified as the most information-bearing part because
only the exons take part in protein coding while the
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introns are spliced off during protein synthesis process.
Gene prediction means detecting locations of the protein-
coding regions of genes in a long DNA chain. Since DNA
encodes information of proteins, various statistical and
computational techniques have been studied and explored
to extract the information content carried by DNA and
distinguish exons from introns.

Genomic information is made up of a finite number of
nucleotides in the form of alphabetical characters; hence,
it is discrete in nature. As a result, digital signal processing
(DSP) techniques can be used as effective tools to analyze
DNA in order to capture its periodic characteristics. The
main objective of spectrum estimation is determination of
power spectrum density of a random process. Power
spectral density (PSD) describes how the average power of
a signal x[n] is distributed with frequency, where x[n] is a
sequence of random variables defined for every integer
n. The estimated PSD provides information about the
structure of a random process which can be used for
refined modeling, prediction, or filtering. Estimation of
power spectrum of discretely sampled processes is generally
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based on procedures employing the fast Fourier transform
(FFT). This approach is computationally efficient and pro-
duces reasonable results, but in spite of the advantages, it
has certain performance limitations. The most important
limitation lies in its frequency resolution. Moreover,
spectral estimation by the Fourier method generates
various harmonics which often lead to false prediction of
coding regions. Among the recently introduced techniques,
the eigendecomposition-based noise subspace method,
known as the least-norm solution is found to be of great
interest. In the present paper the authors addressed the
problems posed by standard FFT method and proposed a
least-norm algorithm based on the concept of subspace
frequency estimation for effective and accurate prediction
of coding regions in DNA sequence.

Application of DSP methods to find periodicities in DNA
sequences has been studied by various researchers [1-4]. It
is established that exon regions of DNA molecules exhibit a
period-3 property because of the codon structure involved
in the translation of nucleotide bases into amino acids
[5-7]. Yin and Yau explained the phenomenon of three-
base periodicity in the Fourier power spectrum of protein-
coding regions resulting from nonuniform distribution of
nucleotides in the three codon positions [8]. An improved
algorithm for gene finding by period-3 periodicity using
the nonlinear tracking differentiator is presented by Yin
et al. [9]. Peng et al. discussed about statistical properties
of genes in their article [10]. A universal graphical rep-
resentation method based on S.S.-T. Yau’s technique
employing trigonometric functions which denotes the four
nucleotide bases to predict coding regions is presented by
Jiang et al. [11]. Application of digital filters to extract
period-3 components and effectively eliminate background
noise present in DNA sequence has given good results
[12-14]. Yu et al. have used in their paper probability
distributions to study similarity in DNA sequences employ-
ing symmetrized Kullback—Leibler convergence [15]. Kwan
et al. introduced novel codes for one-sequence numerical
representation for spectral analysis and compared them
with existing mapping techniques [16]. Roy et al. intro-
duced positional frequency distribution of nucleotides
(PFDN), an algorithm for prediction of coding regions
[17]. Parametric techniques of gene prediction where
autoregressive all-pole models were used for identifying
coding and non-coding regions provided better results
[18,19]. Yu et al. proposed a novel method to construct
moment vectors for DNA sequences using a two-
dimensional graphical representation and proved that
the two had one-to-one correspondence [20]. In another
work, Deng et al. introduced a novel method of character-
izing genetic sequence defining genome space with bio-
logical distance for subsequent applications in analyzing
and annotating genomes [21]. An exclusive survey of
various gene prediction techniques is presented by Pradhan
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et al. [22]. The fundamental theory of principal component
analysis is explained by Shlens and its application is
discussed by Ubeyli et al. [23,24].

In this article, authors have compared and analyzed
power spectral peaks obtained by modified periodogram
method with pseudo-spectrum obtained by least-norm
solution method for detecting the presence of coding
regions in DNA sequence and established superiority of the
later technique [25-28]. The algorithm has been success-
fully tested on several sample databases downloaded from
NCBI GenBank [29].

2 Materials and methods

PSD estimation of DNA sequence requires conversion of
DNA character string into numerical form. Different
researchers have adopted different mapping methods to
achieve this objective. The Voss representation is a very
popular technique giving four binary indicator sequences
Xa[n], x¢[n], x.[n] and x,[n] which takes a value of either 1
or 0 at location n depending on whether the corresponding
character exists at that location or not [7,13,14]. These
indicator sequences show redundancy because

Xa[n] 4 X¢[n] 4+ Xc[n] 4 Xg[n] = 1 for all n (1)

Therefore, three out of these four binary sequences would
be enough to uniquely determine the DNA character string.
There are several other techniques such as complex num-
bers [2], paired numeric [6], universal graphical represen-
tation [11], weak-strong hydrogen bonding [18], EIIP [30],
quaternion [31] etc. each having a certain special feature
of its kind. Rao and Shepherd [19] in their study found
that complex mapping was one of the most effective and
compact mapping rules. In a recent work, Kwan et al. [16]
introduced several novel codes for single-sequence numer-
ical representations for spectral analysis and studied their
relative performances. They focused on direct and simple
numerical representations which satisfied the following
requirements:

(a). Single-sequence mapping for a nucleotide sequence
(b). Fixed value mapping for each nucleotide
(c). Accessible to digital signal processing analysis

Seven single-sequence complex-value numerical repre-
sentations were derived by them in which each nucleotide
of sequence was mapped to a single real value element
(+1 or —1) and a single imaginary value element (+j or - j).
According to the main findings of their study, the K-
Quaternary Code-I was most attractive whereas Rao and
Shepherd found K-Quaternary Code-1III to be more suit-
able. Details of these codes are furnished in Table 1. In this
article, the authors have adopted a novel mapping rule
in which K-Quaternary Code-III has been flipped about
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Table 1 Numerical representations

Name 4 g a t Remarks
K-Quaternary Code-lll - -1 41 4+ Rao and Shepherd
K-Quaternary Code-| -1 = 4+l 4 Kwan et al.
Quaternary Code proposed  —j  +1 =1 +j Proposed mapping

Y-axis assigning numerical values, a=-1, c=-j, g=1
and t=j to nucleotide sequence x[n] as shown in the
following example in order to provide location accuracy
to predicted exons.

x[n]=[atgccttaggat] (2)
After mapping,
Xp[n] = [1j155jj-111-1]] (3)

Once numerical conversion of DNA sequence is obtained,
DSP technique can easily be applied to estimate its power
spectrum. Spectral estimation by non-parametric method
can be broadly classified as direct and indirect. These two
methods are equivalent and are popularly known as the
periodogram method. The direct method takes discrete
Fourier transform (DFT) of the signal and then averages
the square of its magnitude. The indirect method is based
on the concept of first estimating the autocorrelation of
data sequence and then taking its Fourier transform (FT).

In the first part of this section, spectral analysis of DNA
by periodogram method is discussed in brief. The basic of
eigendecomposition is given in the second subsection.
Mathematical background of the least-norm solution is
explained in the third subsection followed by algorithm
of the least-norm solution technique. In the next section
of this article, results and discussion have been presented.
In the first subsection of this section, performance of
proposed method has been compared with the modified
periodogram method. Model order selection by eigenvalue
ratio technique has been elaborated in the next subsec-
tion. In the final and last section of the article, conclusion
has been drawn. MATLAB 7.1 software has been used to
show performance of the estimators.

2.1 Spectral analysis by modified periodogram method

In the direct method mentioned above, periodogram
Poe.(fi) for signal x(n) can be computed by DFT or
more efficiently by fast Fourier transform (FFT) for N
data points as shown in Equation 4:

Poe(k/N) = 1/NIY_ a{n)e PN @

where f; = k/N, fork=0,1,2,..,N-1

To enhance performance of the periodogram method,
at first, the N-point data sequence is divided into K
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overlapping segments of length M each, then the periodo-
gram is computed applying the Bartlett window; finally,
the average is computed from the result.

2.2 Spectral analysis by eigendecomposition

In this article, eigendecomposition of the autocorrelation
matrix has been motivated as an approach for frequency
estimation of DNA sequence. Here, the signal x(n) is
modeled as a sum of p complex exponentials in white
noise w(n) as shown in the following equation:

p
5(1) = DA™+ win), (5)

where amplitude A; are complex values given by A; =
|A;] € with ¢, being uncorrelated random variables that
are uniformly distributed over the interval [z, -7]. The
power spectrum of x(n) consists of a set of p impulses of
amplitude |A;| at frequencies w; for i = 1,2,3,...,p plus power
spectrum of white noise w(n) having variance oo

The M x M autocorrelation sequence of the process with
lag size M is given by

Ry(k) = zpjp,»a’kwt‘ + 028(k), (6)

i=1

where P;=|A;|* is the power in the ith component.
Therefore, the autocorrelation matrix R,, is the sum of
autocorrelation matrix due to signal R, and autocorrelation
matrix due to noise R, which may be written concisely as

Ry = R + R, = EPEM + 6,71, (7)

where E = [ey, e,,..., €p] is an M x p matrix containing p
signal vectors e; and E"' signifies its Hermitian transpose.
P={Py, P,..., P,} is a diagonal matrix of signal powers.
The eigenvalues of Ry is A;= A5 + o7, where A} are eigen-
values of R, having rank p corresponding to signal subspace
and the last (M-p) eigenvalues approximately equal to o}
are noise eigenvalues. Hence, the eigenvalues and eigen-
vectors of R,, may be divided into two groups as shown
below. Assuming that the eigenvectors have been normal-
ized to have unit norm, we may use spectral theorem to
denote Ry, as

p M
Ry = ZMWWH + Z At (8)
=1

i=p+1

The set of eigenvectors {vy, V,,..., V,,}, associated with
largest eigenvalues span the signal subspace and are
called principal eigenvectors. The second subset of
eigenvectors {V,.1, Vp.2,..., Vas} Span the noise subspace
and have ¢, as their eigenvalue. Since the signal and
noise eigenvectors are orthogonal, it follows that the
signal subspace and the noise subspace are also orthogonal.
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After eigendecomposition of the autocorrelation matrix,
the eigenvalues are arranged in decreasing order 1; =1, >
A3,..., 2 Ay as depicted in Figure 1. From this plot of ei-
genvalues, one can distinguish initial steep slope repre-
senting signal and a more or less flat floor representing
noise level.

An issue that is of central importance to successful
implementation of principal-component analysis (PCA)
is the selection of appropriate model order p since the
accuracy of estimated spectrum is critically dependent on
this choice. In this article, the eigenvalue-ratio technique
has been adopted for optimum model order selection.
A plot of A,/A,,1 vs integer values p indicates a large
eigenvalue gap at the threshold of signal subspace and
noise subspace. This p value is chosen as the required
model order and eigenvalues 1,,; to Ay are assumed
to be the noise eigenvalues corresponding to the noise
subspace.

The pseudo-spectrum estimation by noise subspace
method involves three generic steps:

1. Formation of autocorrelation matrix from data
vector.

2. Derivation of noise subspace with the help of
eigendecomposition.

3. Identification of signal components from noise
subspace by frequency estimation function.

2.3 Frequency estimation by least-norm solution

Frequency estimation is the process in which complex
frequency components of a signal are estimated in the
existence of noise [32]. The least-norm algorithm devel-

oped in this paper uses a single vector 4 that is constrained
to lie on the noise subspace and the complex exponential

Eigen-values

A
A+ an
Ags &2
2
Az oy

2
Apt ©
pr o Apr1= Ap2.. Am= an

e

Principal eigen-values Noise eigen-values Index

Figure 1 Decomposition of the eigenvalues of noisy signal into
the principal and noise eigenvalues.
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frequencies are estimated from the peaks of the frequency
estimation function:

Pin(e®) = 1/[¢" @ ’ ©)

where {¢} is an auxiliary vector given by

e = [1 o W W eﬂN-Dw} (10)
with @ constrained to lie in the noise subspace, if the
autocorrelation function is known exactly, then |e™ Z‘
will have nulls at the frequencies of each complex expo-
nentials. Therefore, Z-transform of coefficients of @ may
be factored as

M-1 )4 M-1

Az) = Zu(k)z"k = H (1-e™*z71) H (1-zz ™)

k=0 k=1 k=p+1
(11)

where 7, for k= (p + 1),...,(M — 1) are the spurious roots
that in general do not lie on the unit circle. The least-norm
method attempts to eliminate the effects of spurious zeros
by pushing them inside the unit circle leaving the desired
zeros on the unit circle. The problem then is to determine
which vector in the noise subspace minimizes the effects
of spurious zeros on the peaks of Py ().

The approach used in the least-norm algorithm is to find

a vector 4 that satisfies the three following constraints:

1. The vector 4 lies on the noise subspace ensuring
that p roots of A(z) are on the unit circle.

2. The vector a has least Euclidean norm ensuring
that spurious roots of A(z) lie inside unit circle.

3. The first element of @ is unity, i.e. least-norm solution
is not the zero vector.

gz

'y )
Noise sub-space

Part of vector Vlying in
Noise sub-space [32 G_‘)sl

Signal sub-space
=
g1
Figure 2 Projection of signal vector V on noise sub-space in a
three -dimensional vector space.
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Table 2 Summary of statistical parameters and computation time of modified periodogram and least-norm methods

for various genes

Gene Sliding DFT method Least-norm method
QF. CPU Window K QF. CPU Model Percent
(mean)?/var Time Length No. of (mean)?/var Time Order Rise in
(s) M segments (s) p Q.F.
F56F11.4a 4.83 0.24 351 23 121.89 104.86 20 2.42e + 003
T12B5.1G-1 6.32 0.14 252 07 347.96 48.72 08 541e+003
T12B5.1G-2 5.58 0.14 252 08 305.51 50.37 16 5.37e+ 003
T12B5.1G-3 354 0.09 252 04 742.96 06.68 02 2.09%e + 004
T12B5.1G4 838 0.15 252 09 221.09 54.15 17 2.54e + 003
T12B5.1G-5 5.88 0.13 252 06 227.29 07.76 17 3.76e + 003
C30CT1G-1 1043 0.18 252 12 49841 11.37 07 4.68e + 003
C30C11G-2 392 0.10 210 04 107.79 06.21 17 2.65e + 003
D13156 484 0.15 351 05 246.08 37.38 17 4.98e + 003

To solve this constrained minimization problem, we
begin by noting the constraint that @ lies on the noise
subspace which is given by the following equation:

v, (12)

a="P,

where P, = V,,V!! is the projection matrix projecting an
arbitrary vector v on the noise subspace as shown in
Figure 2 [25].

The least-norm method involves projection of signal
vector v on to the entire noise space.

The third constraint is expressed as

—

a

—

U = 17 (13)

where %, = [1,0,0, ...,O]T
This may be combined with the constraint in Equation
12 giving

v H(Pn“a’l) —1 (14)
The norm of 4 may be written as
1@ 1> =P, V | = V" (P,Pn) V (15)

Since projection matrix P, is Hermitian, therefore P, = P}
and also idempotent, hence P;. = P, we get

14 [ =Py ¥ | = V" (P,Pa) V (16)

Minimizing a is equivalent to finding vector v that

o . . . - -
minimizes the quadratic form of V%P, v

After reformulating the constrained minimization
problem,

ie., minv 1P,V subject to v H(P,,HZZI) =1

(17)

Once the solution of Equation 14 is found, the least-norm
solution is formed by projecting v onto noise subspace

using Equation 12 and using Optimization Theory, the
least-norm solution is found to be

— — —
a=P, v=AP,u, = (P,,ul)/ u; P,u, (18)
x10*
25 : : . . . . T .
T12B5.1
Gene- 3
2L 4
5
3
(TN
2 15} .
T
=)
s}
=
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Figure 3 Percentage rise in quality factor for various genes by

least-norm and periodogram methods.
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which is the projection of the unit vector onto normalized 2.4 Algorithm of proposed least-norm solution technique

noise subspace such that the first coefficient is unity, and  for estimating period-3 peaks

the Lagrange multiplier 1 is given by
Step 1 Convert the samples of data vectors to column

H vector.
A=1/ (ﬁl P, ﬁl) (19) Step 2 Compute autocorrelation matrix of data with

pre-determined lag size (M).
Step 3 Diagonalize the autocorrelation matrix.

In terms of eigenvectors of the autocorrelation matrix, Produce diagonal matrix D of eigenvalues and a full
the least-norm solution is given using quadratic fac- matrix V whose columns are the corresponding
torization (QR) by the following equation: eigenvectors so that X*V = V*D, where X is the

signal matrix.
Step 4 Sort diagonal matrix D in ascending order for
eigendecomposition. Take into account noise subspace
- _ ((Vn VH)ul)/ <u1 (v, VH)M1> (20) spanpeq l?yt e .elgenvectors corresponding to
" " nonsignificant eigenvalues.

Table 3 Summary of performance analysis of data for least-norm and modified periodogram methods

Gene DSP Threshold Prediction measures

methods value Sn So (Sn +Sp)/2 M, w,

F56F11.4a Periodogram 1.75 04 1.0 0.70 0.6 00
Periodogram 1.50 0.8 0.66 0.73 0.2 04

Least-norm * 1.0 1.00 1.00 0.0 0.00

T12B5 Gene-1 Periodogram 1.75 1.0 043 0.71 0.0 0.55
Periodogram 1.50 1.0 0.33 0.66 0.0 0.66

Least-norm * 10 10 1.0 0.0 0.0

T12B5 Gene-2 Periodogram 1.75 1.0 0.6 0.8 0.0 04
Periodogram 1.50 1.0 0.5 0.75 0.0 0.5

Least-norm * 10 10 1.0 0.0 0.0
T12B5 Gene-3 Periodogram 1.75 1.0 0.15 0.57 0.0 0.84
Periodogram 1.50 1.0 0.12 0.56 0.0 0.87

Least-norm * 1.0 10 1.0 0.0 0.0

T12B5 Gene-4 Periodogram 1.75 0.5 04 045 0.5 06
Periodogram 1.50 0.75 033 0.54 0.25 0.66

Least-norm * 1.0 1.0 1.0 0.0 0.0

T12B5 Gene-5 Periodogram 1.75 0.66 0.22 044 033 0.77
Periodogram 1.50 1.0 0.25 0.62 0.0 0.75

Least-norm * 10 1.00 1.00 00 0.0

C30C11 Gene-1 Periodogram 1.75 0.5 04 045 0.5 06
Periodogram 1.50 1.0 04 0.7 0.0 0.6

Least-norm * 1.0 10 1.0 00 0.0

C30C11 Gene-2 Periodogram 1.75 1.0 033 0.66 0.0 0.66
Periodogram 1.50 1.0 0.21 0.60 0.0 0.78

Least-norm * 10 10 1.0 0.0 0.0

D13156 Periodogram 1.75 1.0 0.22 0.61 0.0 0.77
Periodogram 1.50 1.0 0.15 0.57 0.0 0.86

Least-norm * 10 0.5 0.75 0.0 0.5

*Threshold value not required.
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Step 5 Project signal vector v onto the noise space
using projection matrix.

Step 6 Find Least Norm vector @ on noise subspace
with first element equal to unity using QR factorization
and applying the Optimization Theory.

Step 7 Estimate pseudo-spectrum (in dB) by computing
absolute FFT of vector

Step 8 Plot the result (in dB) to observe period-3 spectral
peaks.

3 Results and discussion

The proposed algorithm has been tested on several
eukaryotic genes to predict location of coding regions of
varying lengths of a few base-pairs to thousand base-pairs
and simulation results are compared with that of modified
periodogram on the same DNA data. The segments of test
data used for analysis contain both exons and introns of
fully constructed genes. According to period-3 property of
DNA, a prominent peak should be observed in the PSD
plot of each exon segment. It is observed that the proposed
method produces very sharp and well-defined period-3
peaks indicating existence and numbers of protein-coding
regions of very short to long coding segments present
in the test data. Once the existence and locations of
exons in the enormous length of DNA are confirmed,
further statistical or computational methods may be applied
on the DNA sequence to find the boundaries of protein-
coding regions. The statistical parameters and computation
times for modified periodogram and least-norm methods
for genes F56F11.4a, T12B5.1, C30C11 and D13156 are
indicated in Table 2.

It is observed that the proposed approach removes the
entire noise and reveals the hidden periodicities promin-
ently. A comparison has been drawn with periodogram
method applying Bartlett (triangular) sliding window with
50% overlap and suitable segment lengths A and number
of segments K. Window length M should be chosen
subjectively based on a trade-off between spectral reso-
lution and statistical variance. If M is very small, import-
ant features may be smoothed out, while if M is very large,
the behavior becomes more like unmodified periodogram
with erratic variation. Hence, a compromise value is
selected between range 1/25<M/N < 1/3 where N is
nucleotide sequence length. Quality factor (Q.F.) which
measures the ratio of variance to square of mean of
PSD has been used as comparison metric between the
two methods which are shown in Table 2. It is observed
that quality factor of spectrum by the least-norm method is
much higher than modified periodogram method. Figure 3
shows bar plot of percentage rise in quality factor for
various genes. Table 2 also indicates that computation
time required in the least-norm method is more than
modified periodogram method.
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Figure 4 Plot of PSD by modified periodogram method for
F56F11.4a gene.

3.1 Performance comparison of proposed method with
existing method

The analysis of performance of both the methods can be
made by prediction measures such as sensitivity (S,),
specificity (S,), miss rate (M,) and wrong rate (W,).
Their definitions are stated below:

So=Tp/(Tp+ Fy) (21)
Sp= Tp/(Tp + FP) (22)
M, = M./A. (23)
W, = W,./P, (24)

where M, = missing exons, A, = actual exons, W, = wrong
exons, P, = predicted exons, T, = true positive, F, = false
positive, and F, = false negative. T}, corresponds to those
genes that are accurately predicted by the algorithm and

-4
B
Peak-1
-8
Peak-4
— Peak-2
g -10
@
g Peak-3
E’ 12 l
=
14
y { ' ]
-16
18 1 1 1 1 1 L L
0 1000 2000 3000 4000 5000 6000 7000

Relative Base Locations

Figure 5 Plot of period-3 peaks by least-norm solution for

F56F11.4a gene.
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Figure 6 Plot of PSD by modified periodogram method for
T12B5.1 gene-1.
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Figure 8 Plot of PSD by modified periodogram method for

T125B.1 gene-2.

also exist in the GenBank annotation. F, corresponds
to the exon regions which are identified by the given
algorithm but are not specified in the standard annotation.
F, is coding region that is present in the GenBank annota-
tion but is not predicted as a coding segment by the algo-
rithm. The average value of S, and S, gives the overall
exon sensitivity and specificity. Table 3 summarizes the
simulation results of the eight genes used as test data. It is
evident from tabulated data that S, S, and the average of
Sn and S, of the proposed method are significantly higher
than existing method in all the cases whereas the miss rate
and wrong rate are much lower indicating superior per-
formance of the proposed algorithm over the existing
technique [33].

At first, both modified periodogram technique and
proposed least-norm algorithm are applied to C. elegans

Peak-3
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Magnitude(dB)

0 200 400 600 800 1000 1200 1400
Relative Base Location

Figure 7 Plot of period-3 peaks by least-norm solution for
T12B5.1 gene-1.

cosmid F56F11.4a gene having 8060-base pair (bp) length
test data starting from 7021-bp location. It has five known
exons between locations 7948 to 8059, 9548 to 9877,
11,134 to 11397, 12485 to 12664 and 14275 to 14625 bp.
The modified periodogram result is shown in Figure 4 and
the proposed algorithm result is plotted in Figure 5. In the
PSD plot shown in Figure 4, there are five visible exon
peaks in the presence of background noise. But it is
evident from Figure 5 by the proposed method that the
five sharp period-3 spectral peaks visible in the specific
coding regions are well defined, accurately positioned
and without any noise component.

Figures 6 and 7 show the results of application of
conventional modified periodogram method and pro-
posed least-norm solution method to 32488-bp length C.
elegans cosmid T12B5.1 DNA (Accession no. FO081674.1
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-8
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Figure 9 Plot of period-3 peaks by least-norm solution for

T12B5.1 gene-2.
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i 9 C30C11 gene-2.

AF100307). The plots indicate three exons in gene-1
between locations 17332 to 17402, 17645 to 18266, and
18311 to 18505 bp. In Figure 6, the exon peaks are present
along with other peaks; therefore, prediction becomes
ambiguous. In Figure 7, obtained by the proposed algo-
rithm, there are only three sharp period-3 peaks corre-
sponding to the exons present in the gene. They are in
proper location and are absolutely devoid of noise. Hence,
there is no scope of any ambiguity. Similar results are seen
in Figures 8 and 9 for gene-2 with three exons between
locations 18994 to 19064, 19349 to 19997 and 20059 to
20253 bp. The technique was applied to the remaining
three genes of this DNA and was verified successfully.
Next, both the methods were applied to DNA C30C11
(Accession no. FO080722.7 L09634) from C. eleganschro-
mosome-1II having length 30866 bp. Figures 10 and 11

Peak-1 Peak-3

Peak-4

-3 Peak-2 B

1

L 1 1 L 1
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-6 #—T‘ 4‘
7L
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Figure 11 Plot of period-3 peaks by least-norm solution for
C30C11 gene-1.

mention spectral peaks by modified periodogram and
least-norm solution method respectively for gene-1 with
exons between locations 4874 to 4985, 5034 to 5408, 5452
to 6179 and 6227 to 6526 bp. In Figure 11 it is observed that
peak-2 is shifted to right from actual position. Figures 12
and 13 indicate accurate results for gene-2 with exon
segments between locations 7320 to7503, 7555 to 7757
and 7804 to 7923 bp. All these plots showing results of
both the existing and proposed methods reflect the super-
iority of proposed technique over the conventional method
because the peaks obtained with proposed algorithm
are sharp, well defined, unambiguous, and noise-free. The
threshold values for performance analysis of modified
periodogram method have been chosen judiciously as
1.75 and 1.5, respectively. Table 3 indicates a list of genes
studied and analysis summary of modified periodogram
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L L 1 . | L L
100 200 300 400 500 600 700 800
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Figure 13 Plot of period-3 peaks by least-norm solution for

C30C11 gene-2.
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Table 4 Details of organisms with short exons
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Gene ID GenBank DNA Length of exons in bp Source
accession no. length in bp
DMPROTP1 L17007.1 624 177 (122 to 248, 376 to 425) Didelphis marsupialis (Southern opossum)
Exon1-127 and Exon2-50
OAMTTI X07975.1 2055 186 (995 to 1022, 1312 to 1377, 1697 to 1,788) Qvis aries (sheep)
Exon1-28, Exon2-66, Exon3-92
CALEGLOBIM [ 25363.1 1698 444 (144 to 235, 364 to 586, 1399 to 1527) Callithrix jacchus (white tufted ear marmoset)
PIGAPAI L00626.1 3333 Exon1-92, Exon2-223, Exon3-129 Sus scorfa (pig)

798 (751 to 793, 975 to 1128, 1770 to 2,370)
Exon1-43, Exon2-154,
Exon3-601

and least-norm solution approaches. In all the above
examples cited, the proposed method shows better result
than the existing method giving a higher value of sensitivity,
specificity and their average as well as lower value of miss
rate and wrong rate.

Next, least-norm algorithm has been applied to organ-
isms with very short exon segments. It is known that pre-
diction of exons with less than 100-bp length is difficult
but the proposed least-norm method is found to be very
suitable for detecting presence of exons as small as 28 bp
length. Table 4 shows details of the organisms with short
exons used as test data. Spectral plots for DMPROTP1
and CALEGLOBIM have been shown in Figures 14 and
15 respectively. The figures show very sharp, well defined
and noise-free peaks in exon regions even for very small
exon segments. Similar tests were performed on other
organisms too giving satisfactory results. Hence, it is
established that our method is robust and equally suitable
for short as well as long exons.

The proposed least-norm algorithm though offers high
predictive accuracy compared to existing SDFT method,
it has certain limitations on its part. It is a key issue to
select model order judiciously for accurate exon detection.
In the least-norm method, the time of execution is more
compared to the other existing methods since computa-
tion time depends on the autocorrelation lag size which is
determined depending on the length of nucleotide se-
quence being tested. The computation of many lags is
required in estimation of periodicity which requires great
deal of arithmetic, increasing the execution time of the
proposed technique. It is desirable to exploit certain prop-
erties of autocorrelation function that are known to reduce
the computational load. This can be done by taking advan-
tage of the special technique based on reduction in number
of multiplications given by Kendall [34]. Another method
for speeding up the autocorrelation computation is by the
well-known FFT method, which can also help in reducing
computation time of proposed least-norm technique [35].
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Eigen-value

Wodel Order p

Figure 16 Plot of eigenvalue vs model order for
F56F11.4a gene.

3.2 Eigenvalue-ratio based model order selection
approach

A key issue in developing the eigendecomposition-based
model is proper selection of model order p. In order to
estimate least-norm solution-based pseudo-spectrum, the
dimension M-p of the noise subspace must be determined
accurately. If value of p taken is less than required, then
few prominent peaks may go unnoticed. On the other
hand, if selected model order is more than the required
value, undesired peaks are introduced in the plot leading
to false prediction. The most common approach is to cal-
culate and sort the eigenvalues of the correlation matrix
Ry, of the noisy signal. The plot of eigenvalues sorted in
decreasing order is termed as Scree-plot. The prime eigen-
values of dimension p having steep slope correspond to
the signal subspace. The set of smallest eigenvalues having

Eigen-Values
[+

al- b S S

<Y SRR N\ W ORI R LA S R (R [

2 I i i i \ ]

[u] 5 10 15 20 25 30 35 40 45 50
Model Order n

Figure 17 Plot of eigenvalue vs model order for
C30C11 gene-1.
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Figure 18 Plot of eigenvalue-ratio vs model order
F56F11.4a gene.

dimension M-p with values equal to noise variance o7 is
more or less flat in nature (Figure 1). Decrease in negativity
of the derivative from higher value to lower value is deter-
mined by the slope of tangents drawn from the Scree-plot
to the X-axis. At first, two points are chosen carefully
on the Scree-plot such that the first is on steep slope
and second is on less steep portion of the eigen-curve.
The values of model order p intercepted by the two
projections drawn vertically downward from the point
of the tangent touching the eigen-curve (Scree plot) to the
X-axis are identified. A ‘large gap’ or ‘elbow’ is looked for
within this segment by eigenvalue-ratio technique to be
treated as the threshold value between signal and noise
subspaces (Figures 16 and 17).

A very simple method based on eigenvalue ratio has been
adopted by the authors to find model order p is discussed
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in this subsection [32,36]. As shown in Figures 18 and 19
the authors have plotted eigenvalue ratio A,/A,.; vs model
order p. It is noted that there exists an eigenvalue gap of
high magnitude between orders p =20 and 21 and p =16
and 17, in the figures, respectively. Satisfactory estimates of
rank of Ry, by suggested method was found to be 20 for
F56F11.4a gene, 16 for T12B5.1 gene-2, and 7 for C30C11
gene-1 Thus, it may be considered that eigenvalues 13, 1,7
and Ag onwards can be treated as noise eigenvalues in the
three successive cases.

In this article, spectral content measure techniques
based on sliding DFT was compared with proposed
least-norm technique. In an early work, Tiwari et al
(1997) employed Fourier technique to analyze the three-
base periodicity in order to recognize coding regions
in genomic DNA. They observed that a few genes in
Saccharomyces cerevisiae do not exhibit period-3 property
at all. Anastassiou (2000, 2001) was inspired by the work
of Tiwari et al. and introduced computational and visual
tools for analysis of biomolecular sequences. He devel-
oped optimization procedure for improving performance
of traditional Fourier technique. Later, Vaidyanathan and
Yoon (2004) designed multistage narrowband band-pass
filter for reducing background 1/f noise. Recently, Sahu
and Panda (2011) in their work improved computational
efficiency by employing SDFT with the help of the Goertzel
algorithm, but the method is constrained by frequency
resolution and spectral leakage effects.

The least-norm algorithm presented in this paper
provides an absolutely novel approach. The first important
feature of the proposed algorithm is that it produces very
sharp and well-defined period-3 peaks in the protein-
coding regions. The second significant feature is that it
eliminates noise completely; hence, there is no requirement
of setting threshold value. The third significant feature of
this algorithm is that it is able to effectively detect very
short exons as well. Moreover, this method offers very
high sensitivity and specificity and very low miss rate and
wrong rate compared to other available techniques.

4 Conclusion

DNA sequence analysis through power spectrum estima-
tion by traditional non-parametric methods is in use since
long. These are methodologically straightforward, compu-
tationally simple, and easy to understand, but due to low
SNR, spectral features are difficult to distinguish as noise
artifacts appear in spectral estimates. Therefore, effective
identification of protein-coding region becomes difficult.
The application of least-norm frequency estimator to cap-
ture period-3 peaks in coding regions has been introduced
here. We used a constrained vector that lies on the noise
subspace and the algorithm completely filters out the
spurious peaks. Selection of proper model order is a
fundamental issue in application of the eigendecomposition
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approach. The eigenvalue-ratio ‘gap’ or ‘elbow’ located on
the Scree plot is treated as threshold between signal and
noise spaces. Application of eigendecomposition-based
methods to various DNA sequences has given amazing
results as compared to standard classical methods in terms
of resolution, quality factor, sensitivity, specificity, miss
rate, and wrong rate. It was observed that high-resolution
pseudo-spectrum estimator based on least-norm solution
could identify protein-coding regions in DNA accurately.
Another important feature of the proposed technique is
that it can detect the presence of extremely short exon
segments which is difficult for other existing methods.
Unfortunately the computational effort for this high-
resolution method is significantly higher than FFT pro-
cessing. This limitation may be tackled by applying
Kendall’s algorithm or incorporating the well-known
FFT method to speed up the autocorrelation computation.
Hence, it can be concluded that identification of
protein-coding regions in DNA can be done effectively in
a much superior way by applying the least-norm solution
technique.
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