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Abstract

Background: Recent advances in genome technologies and the subsequent collection of genomic information at
various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in
achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of
high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions
in the data. For predicting relevant clinical outcomes, we propose a flexible statistical machine learning approach that
acknowledges and models the interaction between platform-specific measurements through nonlinear kernel
machines and borrows information within and between platforms through a hierarchical Bayesian framework. Our
model has parameters with direct interpretations in terms of the effects of platforms and data interactions within and
across platforms. The parameter estimation algorithm in our model uses a computationally efficient variational Bayes
approach that scales well to large high-throughput datasets.

Results: We apply our methods of integrating gene/mRNA expression and microRNA profiles for predicting patient
survival times to The Cancer Genome Atlas (TCGA) based glioblastoma multiforme (GBM) dataset. In terms of
prediction accuracy, we show that our non-linear and interaction-based integrative methods perform better than
linear alternatives and non-integrative methods that do not account for interactions between the platforms. We also
find several prognostic mRNAs and microRNAs that are related to tumor invasion and are known to drive tumor
metastasis and severe inflammatory response in GBM. In addition, our analysis reveals several interesting mRNA and
microRNA interactions that have known implications in the etiology of GBM.

Conclusions: Our approach gains its flexibility and power by modeling the non-linear interaction structures between
and within the platforms. Our framework is a useful tool for biomedical researchers, since clinical prediction using
multi-platform genomic information is an important step towards personalized treatment of many cancers. We have a
freely available software at: http://odin.mdacc.tmc.edu/~vbaladan.
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1 Introduction
Recent advances in genome technologies such as microar-
rays and next-generation sequencing have enabled the
measurement of genomic activity at a very detailed
resolution (e.g., base pair, single-nucleotide polymor-
phisms) as well as across multiple molecular levels: the
epigenome, transcriptome and proteome. The collec-
tion of genomic information at various resolutions holds
promise to accelerate the amalgamation of discovery sci-
ence and clinical medicine [1]. One of the overarching
goals of such studies is to relate these genomic data to rel-
evant (patient-specific) clinical outcomes, not only to find
significant biomarkers of disease progression/evolution
but also to use the biomarkers to develop prediction
models for deployment in future therapeutic studies. Fur-
thermore, genomic data are now available from multiple
platforms and resolutions for the same individual, thus
allowing a researcher to simultaneously query thesemulti-
ple sources of data to achieve these goals. Such motivating
data have been collected under the aegis of The Cancer
Genome Atlas (TCGA) project, wherein data from mul-
tiple genomic platforms such as gene/mRNA expression,
DNA copy number, methylation and microRNA expres-
sion profiles are available for multiple tumor types (see
http://cancergenome.nih.gov for more details). In addi-
tion, the available clinical information, such as stage
of disease and survival times, motivates the analytic
frameworks that integrate patient-specific data.
One of the main challenges in modeling the statisti-

cal dependence between such high-throughput studies is
that a large number of measurements (usually in thou-
sands) is available for a relatively small number (usually
in tens or hundreds) of patient samples; therefore, clas-
sical statistical approaches based on linear models and
hierarchical clustering are prone to over-fitting [2,3]. In
these situations, [3] recommends accounting for high-
dimensionality by using approaches that borrow infor-
mation across covariates to compensate for the limited
information available across samples, which leads to bet-
ter and more reliable inference. Several approaches have
been developed to address these challenges in various
contexts. Some examples include linear parametric mod-
els and hierarchical clustering for inferring the relation
between phenotypes and genomic features [4], hierarchi-
cal Bayesian modeling approaches based on linear shrink-
age estimators [5], linear canonical correlation analysis
[6], intensity-based approaches for merging datasets [7],
and regularized linear regression approaches [8].
Although these approaches are computationally effi-

cient, interpretable, and simple, they make two unrealistic
assumptions for practical data analysis. First, due to the
parametric and linear assumptions, they might miss the
underlying non-linear patterns in the data. Second, and
more importantly, these non-linear patterns are further

amplified in the presence of complex interactions within
and between the different platforms that must be mod-
eled while integrating data from these platforms. In this
paper, we present a statistical machine learning approach
called the hierarchical relevance vector machines
(H-RVM) to address these modeling and inferential chal-
lenges. Briefly, the framework presented here: (a) models
the relation between a relevant clinical outcome (scalar)
and high-dimensional covariates/features through a
data-adaptive and flexible nonparametric approach,(b)
borrows information within and between platforms
through a hierarchical Bayesian framework, (c) acknowl-
edges and models the interaction between platforms
through nonlinear kernel-based functionals, (d) has
parameters that have explicit interpretation as the effects
of the platforms and their interactions on the outcome,
and (e) uses a computationally efficient variational Bayes
approach that can be readily scaled to large datasets.
Our methods are motivated by and applied to a TCGA

based glioblastoma multiforme (GBM) dataset, for which
we integrate gene (mRNA) and microRNA (miRNA)
expression profiles to predict patient survival timesa.
There is an increasing interest in identifying subtypes of
GBM based on its gene expression data. The ultimate goal
of subtyping GBM is to identify gene expression profiles
that are prognostic or predictive of treatment outcomes.
The known subtypes of GBM samples in TCGA include
pro-neural, neural, classical, and mesenchymal; with the
first two classes of which are suspected to differ from the
other two in the cell of origin, which is a critical deter-
minant of effective treatment regimens [9]. Differential
expressions of miRNAs were recently found to be associ-
ated with many diseases, including cancers [10,11]. Pre-
vious studies have shown that combining multiple types
of data, such as mRNA and miRNA expressions, could
significantly improve the accuracy of detecting GBM sub-
types, and thereby potentially predict the clinical out-
comes [12]. However, methods are lacking to accurately
model the effect of interactions between these data types
directly on clinical outcomes. Here we show that our non-
linear and interaction-based integrative methods have
better prediction accuracy than linear alternatives and
non-integrative methods that do not account for the inter-
actions between the platforms. We also find several prog-
nostic mRNAs and microRNAs that are related to tumor
invasion and that are known to drive tumormetastasis and
severe inflammatory response in GBM. In addition, our
analysis reveals several interesting mRNA-miRNA inter-
actions that have known implications in the etiology of
GBM. The paper is structured as follows. The basic con-
struction of H-RVM is detailed in Section 2. The analysis
of GBM data is presented in Section 3, and concluding
remarks about the H-RVM framework are presented in
Section 4.

http://cancergenome.nih.gov
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2 Hierarchical Relevance Vector Machinemodel
For ease of exposition, we illustrate the model build-
ing process of H-RVM using data from two sources:
gene/mRNA and miRNA expression measurements. The
framework is easily extended to multiple platforms as
discussed in Section 4. Suppose, we have data for N
patients, and X and Y represent mean-centered and -
standardized gene and miRNA expression matrices, with
rows corresponding to patients and columns represent-
ing the G genes and M miRNAs, respectively b. Center-
ing and standardizing the gene and miRNA expression
matrices remove any systematic mean or scaling effects
caused by the use of different data sources, and make
them compatible for model fitting. We denote the gene
and miRNA expression for the i-th patient as row vec-
tors xTi = (xi1, . . . , xiG) and yTi = (yi1, . . . , yiM). These
covariates are high-dimensional, that is, both G and M
are much larger than N ; for example, in the GBM data
G ≈ 12000,M ≈ 540,N ≈ 250. Based on these measure-
ments, our aim is to predict a relevant clinical outcome,
which in our case is the (log-transformed) survival time
measured from time of diagnosis to death, denoted by the
column vector t = (t1, . . . , tN ) for the N patients.

2.1 Basic construction
A basic (conceptual) model can be written in a high-
dimensional regression setting as,

ti = α0+fx(xi,α1)+fy(yi,α2)+f(x⊗y)(xi, yi,α3)+εi, (1)

where α0 is the overall mean effect and εi is the random
error; f (•)’s, generally referred to as basis functions, are
chosen to achieve a desired level of flexibility for model-
ing the effects of X,Y, and their functions on t. Of these
functions, f(x⊗y) models the interactions betweenX and Y,
and the remaining basis functions, fx and fy, respectively,
model the main effects ofX andY for predicting t. In most
situations the regression coefficients, α = (α0,α1,α2,α3),
linearly relate the covariate effects (i.e., values of the basis
functions evaluated at the covariates) to the response. Lin-
ear regression is a special case of (1) when all the basis
functions are linear, and the response for the i-th patient,

ti = xTi α1 + yTi α2 + (xi ⊗ yi)Tα3 + εi, (2)

where (xi⊗yi) = (xi1yi1, . . . , xi1yiM, . . . , xiGyi1, . . . , xiGyiM)

models the first order interactions between genes and
miRNAs and α0 = 0 because of the centered covariates.
Further, due to the high-dimensional covariates xi’s and
yi’s, a penalty is imposed on the regression coefficients
α = (α1,α2,α3) to avoid overfitting. The most popular
of such penalties is the Lasso because it has many desir-
able properties for high-dimensional linear regression
and variable selection [13,14]. Although (2) with a Lasso
penalty is a popular choice for high-dimensional regres-
sion, the linearity of the basis functions imposes serious

restrictions on the flexibility of the model. For example,
(2) does not model nonlinear covariate effects as well as
second or higher order interactions between genes and
miRNAs.
Through H-RVM, we propose a regression model as

a special case of (1), using kernel-based functions to
respectively model fx, fy, and f(x⊗y). The kernel func-
tions incorporate nonlinear effects of possible interactions
within and between high-dimensional gene and miRNA
expression measurements. Further, H-RVM estimates the
respective contributions of genes, miRNAs, and their
interactions in predicting survival times, which is of pri-
mary importance in developing novel drug targets. H-
RVM posits the following regression of t on X and Y for
the i-th patient:

ti = β1fx{xi,α1}+β2fy{yi,α2}+β3f(x⊗y){(x⊗y)i,α3}+εi,
(3)

where (x ⊗ y)i = (xi1, . . . , xiG, yi1, . . . , yiM) is a vector
of length G + M and β = (β1,β2,β3) is such that its
components lie on a probability simplex i.e. βm > 0 for
m = 1, 2, 3 and

∑3
m=1 βm = 1. H-RVM posits different

kernels for the data sources and combines them through
weights β . Themodel parameters have the following inter-
pretation:

• The kernel functions fx(•) and fy(•)model all possible
interactions among genes and among miRNAs,
respectively, and f(x⊗y)(•) models all possible
interactions between genes and miRNAs. The three
kernels together account for the high-dimensionality
and non-linearity of the covariate effects of X and Y
by embedding them in the space of kernels.

• The m-th component of β , βm, denotes the influence
of the m-th source on predicting the log survival time
and has the following interpretation: if β = {1, 0, 0},
then (3) corresponds to a functional regression model
that predicts t (log survival time) with only x (gene
expressions) as covariates. Conversely, if
β = {1/3, 1/3, 1/3}, then (3) corresponds to a
regression model, with the platforms and their
interactions contributing equally to the prediction of
the survival time. In reality, we expect (and show)
different contributions from each platform and
estimate these weights from the data.

The task now remains to explicitly characterize the
functions fx(•), fy(•) and f(x⊗y)(•) using multiple kernels,
as detailed below.

2.2 Multiple kernel learning
Kernel learning (KL) is an approach for nonparametric
classification and regression that can be used for predict-
ing t based on X and Y [14]. First, for simplicity, assume
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that we want to predict t based on X. KL posits the
following relation between t and X

ti = α0 +
N∑
j=1

αjK(xj, xi|σ 2) + εi ⇒ t = KTα + ε, (4)

where σ 2 is a kernel-specific “bandwidth” parameter and
depends on the choice of kernel, K(•) (detailed later in the
section) and ε = (ε1, . . . , εN ) is the (white-noise) error.
The primary parameter of interest is α = (α0, . . . ,αN )T ,
and α1, . . . ,αN correspond to weights assigned to the
features for N xj’s. Support Vector Machine (SVM) and
Relevance Vector Machine (RVM) are canonical examples
of KL [14]. We prefer RVM because of its probabilistic
interpretation and other optimal properties compared to
those of SVM [15]. There are cases, however, where one
feature matrix may not fit the data well. Based on this
observation, Multiple Kernel Learning (MKL) extends (4)
and replacesK by a weighted average of L feature matrices
{Kl}Ll=1,

ti = α0 +
N∑
j=1

αj

L∑
l=1

βlKl(xj, xi|σ 2
l ) + εi =⇒

t = β1KT
1 α + . . . + βlKT

l α + . . . + βLKT
L α + ε.

(5)

MKL improves the flexibility of KL by introducing L
bandwidth parameters {σ 2

l }Ll=1 and L weights for feature
matrices β = (β1, . . . ,βL)T . A variety of approaches
exist to learn {σ 2

l }Ll=1, β , and α for MKL (for details see
[14,16,17]). Note that in all these works the data source
(i.e., X) remains the same for both KL and MKL. The H-
RVM framework developed in this article extends KL to
include multiple data sources and their interactions, and
uses a learning algorithm similar to the MKL framework.
Because the three data sources (gene expressions,

miRNA expressions, and their interactions) can be used
separately for predicting the log survival time, it is reason-
able to combine their predictions to obtain more reliable
estimates. To this end, H-RVM combines respective pre-
dictions obtained from different sources obtained using
KL (4) through a weighted average, and chooses appro-
priate weights using MKL (5). Similar to (4), KT

1 α,KT
2 α,

and KT
3 α are the predicted values of t that correspond to

genes, miRNAs, and their interactions, respectively. Using
(5), we combine the predictions {KT

i α}3i=1 through the
weight vector β = (β1,β2,β3) to model t as

t = (β1KT
1 + β2KT

2 + β3KT
3 )α + ε = KT

β α + ε. (6)

We further constrain β such that its components lie
on a probability simplex, i.e.,

∑3
m=1 βm = 1. This con-

straint ensures that the joint (convolved) kernel, Kβ , is
positive definite and that βm denotes the influence of the
m-th source in predicting the log survival time. Note that
H-RVM is a special case of (3) with fx(xi,α) ≡ kT1,iα,

fy(yi,α) ≡ kT2,iα, and f(x⊗y)((x⊗y)i,α) ≡ kT3,iα, where km,i
is the i-th column of Km. Given {Ki}3i=1, MKL can be used
to learn α and β .
Although similar to (5), (6) differs in two important

ways. First, (6) obtains kernels using (4) for different
data sources, namely gene expression, miRNA expression,
and their interaction. Second, we allow for dependence
between data sources via the interaction kernel (K3), but
MKL does not; instead MKL uses a convex combination
of the different kernels from the same data source to aid
prediction.
The learning algorithm of H-RVM is independent of

the choice of kernels, but in this work we use a Gaussian
radial basis function (RBF) kernel (denoted byK) [14]. The
RBF kernel maps the m-th high-dimensional covariate to
its feature space that is represented as feature matrix Km.
The feature matrices K1,K2, and K3 correspond to genes,
miRNAs, and interactions, and their (i, j)-th entries are as
follows:

(K1)ij = e
− ‖xi−xj‖2

2σ21 = K(xi, xj|σ 2
1 ),

(K2)ij = e
− ‖yi−yj‖2

2σ22 = K(yi, yj|σ 2
2 ),

(K3)ij = e
− ‖(x⊗y)i−(x⊗y)j‖2

2σ23 = K((x ⊗ y)i, (x ⊗ y)j|σ 2
3 ),

(7)

where σ 2
m is the “bandwidth” parameter of the m-th ker-

nel matrix and is chosen a priori through cross-validation
(see [14] for details). The other choices of kernels include
polynomial kernels and matern kernels [18]. To account
for the overall mean (or intercept) in (1), an extra row of
1’s is appended to the feature matrices in (7); therefore,
{Ki}3i=1 hereafter have dimensions (N + 1) × N .

2.3 Generative Bayesian model for H-RVM
H-RVM reformulates (6) as a hierarchical Bayesian model
for greater flexibility and better interpretation of its
parameters. This reformulation serves two important
purposes. First, H-RVM is interpreted as a hierarchical
Bayesian extension of RVM [15], which is a special case
of Bayesian KL. Second, instead of using MKL methods,
H-RVM learns parameters α and β from t,X, and Y using
the variational learning algorithm of hierarchical kernel
learning (HKL) [14,16].
H-RVM posits the following generative model for the

(noisy) log survival time measurements t. Similar to MKL,
KT

β α represents the mean of t. The error distribution is
Gaussian with mean 0 and precision parameter γ (8).
Further, we impose a Gamma prior on γ such that

t|α,β , γ ,X,Y ∼ N (t|KT
β α, γ −1I), (8)

γ ∼ Gamma(γ |cγ , dγ ), (9)
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where N (.|μ,�) represents a multivariate Gaussian dis-
tribution with mean μ and covariance matrix � and
Gamma(.|c•, d•) represents a Gamma distribution with
respective shape and rate parameters c• and d•.
Motivated by the “automatic relevance determination”

idea of RVM, we impose independent Gaussian priors
on the αj’s with the same mean 0 and different precision
parameters φj’s (10), where φj controls (a priori) predic-
tive power of the j-th feature vector from the three data
sources for the log survival time. A large φj indicates low
predictive power. We also impose independent Gamma
priors on the φj’s,

α|φ ∼ N (α|0, diag(φ−1)), (10)

φ ∼
N∏
j=0

Gamma(φj|cφ , dφ), (11)

where φ = (φ0,φ1 , . . . ,φn). This setting forces many αj’s
a posteriori to be near 0 with high precision. Most of the
variance in t is explained by a small number of feature
vectors that correspond to nonzero αj’s. These feature vec-
tors are the “relevance vectors” of H-RVM that have the
following three characteristics: they prevent over-fitting,
represent a parsimonious description of the data, and cor-
respond to feature vectors that are most predictive of the
log survival time. An equivalent prior setting is found by
marginalizing the φj’s from the joint distribution of α and
φ above, which imposes a multivariate Student’s t prior on
α with mean 0.
Finally, we impose a Dirichlet prior on β to ensure that

its components lie on a probability simplex:

β = (β1,β2,β3) ∼ Dirichlet(β|a1, a2, a3), (12)

where the m-th component of β , βm, denotes the
influence of m-th source in predicting the log survival
time.
The hierarchical Bayesian model (8) – (12) specifies a

complete sampling model for the H-RVM framework. It
can also be interpreted as a probabilistic approach for
combining the predictions of log survival times from the
three RVMs respectively corresponding to gene expres-
sions, miRNA expressions, and their interactions. H-RVM
introduces an additional hierarchy and combines the pre-
dictions of these three RVMs as a weighted average,
with the weights generated from a Dirichlet distribu-
tion (12). The increased flexibility of H-RVM over RVM
comes at the cost of analytic intractability of the poste-
rior distributions of the H-RVM parameters. Estimation
of the posterior distributions of the H-RVM’s param-
eters can proceed via either simulation-based Markov
chain Monte Carlo (MCMC) approaches or determin-
istic variational Bayes approaches. Given the complex-
ity and size of high-throughput data in general and

GBM data in particular, MCMC approaches tend to be
computationally expensive and slow. We employ vari-
ational Bayes methods from HKL [16] and obtain the
analytically tractable variational posterior distribution,
q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3), that approxi-
mates analytically intractable true posterior distribution,
p(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3). This approxi-
mation achieves analytic tractability by assuming that
α,β ,φ, and γ are independent under the variational
posterior distribution. The analytic tractability leads to
improved computational efficiency of the variational
Bayes approach over sampling-based MCMC approaches.
The derivations for variational posterior distributions are
provided in Appendix A.

3 Data analysis
We apply the H-RVM approach to the GBM data as
introduced in Section 1. GBM was one of the first can-
cers evaluated by the TCGA. GBM data have multi-
ple molecular measurements on over 500 samples that
include gene expression, copy number, methylation and
microRNA expression. TCGA datasets are available at
http://tcga-data.nci.nih.gov/tcga/. The dataset we analyze
here includes information about the gene expressions
(11972 probes), miRNA expressions (534 probes), and
(uncensored) survival times for matched patient samples
(248).
To remove the irrelevant noise variables before model

fitting, we prescreened the gene and miRNA probes as
follows. We performed univariate regression of the log
survival times on the gene expression values, obtained
p-values, and retained gene and miRNA probes that
cross a liberal p-value threshold ( ≤ 0.05 here) – to
balance the practical and statistical significance. This
pre-selection identifies 1747 and 43 gene expression and
miRNA probes, respectively, for downstream modeling.
All our analyses and comparisons were based on these
selected gene and miRNA probes.
We compare the predictions of H-RVM and three linear

methods: penalized regressions (2) with the Lasso penalty
[13] and with the following covariates: i. gene expressions
(Gene-Lasso), ii. miRNA expressions (MiRNA-Lasso),
and iii. both gene and miRNA expressions, and their first
order interactions (Interaction-Lasso). We randomly split
the GBM survival data into a training data and a test
data with 223 (90%) and 25 (10%) patients, respectively.
H-RVM, Gene-Lasso, MiRNA-Lasso, and Interaction
Lasso are fit using the gene and miRNA expressions
and log survival times in the training data. The varia-
tional inference algorithm is used for fitting H-RVM (see
Appendix A). The R package glmnet is used for the three
penalized linear regressions [19,20]. The log survival times
of the test data are predicted for the four methods using
the model fits on the training data. The mean squared

http://tcga-data.nci.nih.gov/tcga/
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prediction errors (MSPEs) are respectively calculated for
the four models as the average of the squared difference
between the observed and predicted values for the test
data. This process of randomly splitting the GBM survival
data into training+test data and fitting the four models is
repeated 50 times. The results are summarized below.
Figure 1 shows the prediction results for H-RVM, Gene-

Lasso, MiRNA-Lasso, and Interaction-Lasso using the
kernel density estimates (KDEs) of the MSPEs for the 50
random splits. The KDEs of the MSPEs for H-RVM is
shifted to lower values than those for the three penalized
linear regressions. The KDEs of the MSPEs for Gene-
Lasso, MiRNA-Lasso, and Interaction-Lasso are close
to each other, which implies that the MSPEs for these
models are fairly similar. Two observations arise from
these results. First, the results indicate that penalized
linear regression with the Lasso penalty does not lead
to improved performance after accounting for interac-
tions among covariates, which has been well-established
in literature [19]. Second, the prediction results of the
penalized linear regressions do not improve after model-
ing the first order interactions among genes and miRNAs,
thus indicating the presence of non-linear genomic effects
and second or higher order interactions among them.
For this case study, we see that H-RVM performs bet-
ter than the penalized linear regression methods. This
may be because of H-RVM accounts for the nonlinear
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Figure 1 Kernel density estimates. Kernel density estimates (KDEs)
of mean square prediction errors (MSPEs) for H-RVM, Gene-Lasso,
MiRNA-Lasso, and Interaction-Lasso. The GBM survival data is
randomly split 50 times into training and test data, all four models are
fit on the training data, and MSPEs for log survival times are calculated
for the test data using the model fit on training data. The x-axis
represents the MSPEs and the y-axis represents the respective KDEs
for H-RVM (in solid red), Gene-Lasso (in dotted blue), MiRNA-Lasso
(in dotted and dashed blue), and Interaction-Lasso (in dashed blue).

effects of genes and miRNAs and models the interactions
within genes, within miRNAs, and between genes and
miRNAs. Further, because we model the log survival time,
the gain for survival time predictions is, in fact, expo-
nentially higher for H-RVM compared to those for the
other methods.
We compared the performance of the predictions of the

log survival times from H-RVM and the observed survival
times using Kaplan-Meier estimates of the survival curves.
We used the R package survival to perform the log
rank test and estimate the Kaplan-Meier survival curves
[21]. Figure 2 compares the survival probability curves of
the log survival times of patients predicted to be in the
long and short survival groups by H-RVM. The patients
are assigned to the long and short survival groups based
on a median cut-off of the predicted log survival times
obtained from H-RVM. The p-value of the log rank test
that the two survival curves are the same is close to 0,
indicating that the survival group predictions of H-RVM
closely agree with the observed survival groups of the
patients. In addition, Figure 3 compares the actual survival
probability curves of the observed and predicted log sur-
vival times of patients in the test data with the minimum
MSPE. The p-values and the survival probability curves
indicate that the log survival time predictions of H-RVM
agree closely agree with the observed log survival times,
as well.
One of the additional gains of our modeling frame-

work is the determination of which platform has a more
profound influence on predicting the response, as cap-
tured by the weight parameter β . Figure 4 shows the
estimates of the weights β for predicting the log sur-
vival time of the patients for gene expression, miRNA
expressions, and their interactions obtained from H-
RVM. Themedians of the weights (25% and 75% quartiles)
for the three data sources are 0.239 (0.113 and 0.360),
0.504 (0.408 and 0.583), and 0.201 (0.108 and 0.404),
respectively. Interestingly, H-RVM shows that miRNAs
have better predictive power than genes in predicting
the log survival times of patients in the GBM data. The
nonzero weight for interactions between gene andmiRNA
expressions further confirms the presence of nonlinear
interactions.
To gain biological insights into our results, we per-

formed a functional analysis of our model fitting results.
We used Ingenuity Pathway Analysis software to perform
functional analysis on selected significant genes used in
fitting H-RVM.We used targetHub [22] to find the known
and predicted interactions between significant genes and
miRNAs. mirTarBase, a curated database of experimen-
tally validated miRNA targets, was our choice as a source
of known gene and miRNA interactions [23]. To identify
the predicted gene and miRNA interactions, we used tar-
getScan data [24] to filter out miRNA-gene interactions
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Figure 2 Survival probability curves for TCGA data. Survival probability curves for log survival time in the TCGA GBM data. The solid lines are the
Kaplan-Meier estimates of survival probabilities for the patients predicted to have long survival times (in blue) and for the patients predicted to have
short survival times (in red), respectively. The patients are assigned to the long and short survival groups based on the estimates of log survival times
obtained from H-RVM. The dotted lines indicate point-wise 95% confidence intervals for the survival probabilities. The p-value of the log rank test is 0.

in which the miRNA and gene effects on survival were
concordant, since discordant behavior is expected in bio-
logical systems for a direct interaction between miRNA
and its targets.
Pathway analyses indicates that the anti-survival genes

(i.e., genes with negative effects on survival times) are
enriched with signaling pathways related to tumor inva-
sion (see Figure 5). HMGB1 and TWEAK signaling

pathways, which are known to drive tumor metastasis
and severe inflammatory responses in GBM and other
cancers, are associated with these genes [25-28]. Pro-
survival genes are represented by PDGF, PTEN and other
signaling pathways. It is well-established that the PDGF
signaling pathway dominates the proneural subgroup,
which correlates with a good survival time for patients
with GBM [29]. The functional terms cellular movement
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Figure 3 True and predicted survival probability curves. Survival probability curves for the observed log survival time and predicted log survival
time (using H-RVM) of the patients in the test data with minimummean square prediction error. The solid lines are the Kaplan-Meier estimates of
survival probabilities for the predicted (in blue) and observed (in red) log survival times in the test data. The dotted lines indicate point-wise 95%
confidence intervals for the survival probabilities. The p-value of the log rank test is 0.0964.
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Figure 4 Boxplots of weights. Boxplots of weights β = (β1,β2,β3) of gene expressions, miRNA expressions, and their interactions in predicting
log survival time. The GBM survival data is randomly split 50 times into training and test data, H-RVM is fit on the training data, and β is obtained
from the fit on training data. The y-axis shows the distributions of respective weights for gene expressions, miRNA expressions, and their interactions
in predicting log survival time of patients across 50 random splits of the GBM survival data.

and cell-to-cell signaling and interaction pathways are
enriched for anti-survival genes, reinforcing their role in
invasive GBM.
The target analysis of miRNA revealed 22 known inter-

actions between 8 miRNAs and 20 genes, as shown
in Table 1. Four of these eight miRNAs (hsa-miR-31,
hsa-miR-146b, hsa-miR-221 and hsa-miR-222) were pre-
viously identified as anti-survival markers of GBM [30].

Mir-21 is an established marker of GBM and is known
to target many tumor suppressor genes [31]. Mir-34a
expression is higher in other GBM subtypes compared to
that in the pro-survival proneural glioma subtype [32].
The anti-survival patterns of all these miRNAs indicate
that these gene and miRNA interactions can be tar-
geted for therapy of GBM subgroups with expected poor
survival. We also identified 1006 predicted interactions

Figure 5 Comparison of the signaling pathways. Comparison of the signaling pathways associated with significant prognostic genes in
Glioblastoma multiforme.
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Table 1 List of known gene-microRNA interactions
identified as significant in the H-RVMmodel using target
analysis

Gene symbols microRNA

FOXP3, YY1, KLF13, ETS1 hsa-mir-31

FOXO3, DDIT4 hsa-mir-221

ATAT1 hsa-mir-23a

FOXO3 hsa-mir-222

FGG , CPEB3, FGB, PIK3R1 hsa-mir-29a

PDGFB hsa-mir-146b

PDCD4, TOPORS, BASP1, MARCKS, TP53BP2 hsa-mir-21

SIRT1, YY1, E2F3, CDC25C hsa-mir-34a

(by TargetScan) between 31 miRNA and 484 genes that
are significant (see Additional file 1).

4 Conclusions and future work
We have presented an integrative framework, H-RVM,
that generalizes the multiple kernel learning frame-
work for integrating high-dimensional data from multi-
ple sources, incorporating within and between platform
interactions to develop a predictionmodel for clinical out-
comes. We applied H-RVM to a high-dimensional TCGA
GBM data to predict patient survival times using two data
sources: gene and miRNA expressions, and found that the
predictive performance of H-RVM is better than those
of linear methods that do not model nonlinear effects
and interactions. We hypothesize that H-RVM gains flex-
ibility and power by modeling the non-linear interaction
structures between gene andmiRNA expressions. H-RVM
will be a useful tool for biomedical researchers, as clini-
cal prediction using multi-platform genomic information
is an important step towards identifying personalized
treatments for many cancers. We have code for fitting H-
RVM that is freely available at the corresponding author’s
website (see Additional file 2).
Although we have presented the application of H-RVM

in the context of two platforms, the framework is general
and can be extended and adapted to data from multi-
ple platforms with different distributional assumptions.
This will essentially entail a generalization of the H-RVM
model by assuming additional terms for the different
platforms. One key issue that warrants further investi-
gation is an increase in the number of (multiplicative)
between-platform interaction terms. We used the compu-
tationally efficient variational Bayes methods, which are
extremely useful for handling large datasets from projects
such as TCGA. In addition, [17] presents more scalable
versions of HKL and MKL that can be adapted to our
framework. Our future work will concentrate on extend-
ing the H-RVM framework using Bayesian spike and slab
priors to select variables from the interacting covariates

before embedding the data in the space of kernels, as
well as incorporating uncertainty estimations of the scale
parameters – thus aiding the joint model building process.

Endnotes
a We use gene and mRNA interchangeably to mean

transcript-level expression.
b We use bold lowercase and uppercase alphabets to

denote column vectors and matrices, respectively.

A Appendix: Variational inference for H-RVM
Following the hierarchic kernel learning algorithm (HKL)
of [16], we provide the derivation for the variational
inference algorithm that estimates the variational pos-
terior distributions for the parameters of H-RVM. Our
interest lies in the posterior distributions of α and β that
are obtained using the Bayesian model (8) – (12). Unlike
RVM, the posterior distributions of α and β in H-RVM
are analytically intractable. There are several techniques
that can be used to obtain these posteriors distributions.
We employ the variational Bayes methods from HKL
[16] and obtain analytically tractable variational posterior
distribution, q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3),
that approximates analytically intractable true posterior
distribution, p(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3).
The variational approach minimizes the Kullback-
Liebler (KL) divergence between q(α, β , φ, γ |t,
X,Y, cφ , dφ , cγ , dγ , a1, a2, a3) and p(α,β , φ, γ |t,X,Y,
cφ , dφ , cγ , dγ , a1, a2, a3). This approximation achieves
analytic tractability by assuming that α,β , φ, and γ

are independent under q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ ,
dγ , a1, a2, a3). Therefore,

q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3)
= q(α)q(β)q(φ)q(γ ),

(13)

where we have suppressed the conditioning on the
data and hyperparameters for the variational pos-
teriors on the right. Notice that the factorization
(13) alone guarantees the analytic tractability of
q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ , dγ , a1, a2, a3), and we do
not assume any distributional form for the q’s. Following
[16] and [14], the variational posterior distributions are
derived as

log q(α) ∝ Eβ ,φ,γ
[
p(α,β ,φ, γ , t,X,Y|

cφ , dφ , cγ , dγ , a1, a2, a3)
]
, (14)

log q(β) ∝ Eα,φ,γ
[
p(α,β ,φ, γ , t,X,Y|

cφ , dφ , cγ , dγ , a1, a2, a3)
]
, (15)

log q(φ) ∝ Eα,β ,γ
[
p(α,β ,φ, γ , t,X,Y|

cφ , dφ , cγ , dγ , a1, a2, a3)
]
, (16)

log q(γ ) ∝ Eα,β ,φ
[
p(α,β ,φ, γ , t,X,Y|

cφ , dφ , cγ , dγ , a1, a2, a3)
]
, (17)
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where all expectations are with respect to the variational
posterior distributions. Hereafter, we will denote E•[ f ] as
〈f 〉• for notational simplicity.
Following [16] and using (14), the variational posterior

distribution of α,

q(α) = N (μα ,�α);

�α =
[
〈γ 〉γ 〈KβKT

β 〉β + diag(〈φ〉φ)
]−1

,

μα = 〈γ 〉γ �α〈Kβ〉βt.
(18)

Following [16] and using (16), the variational posterior
distribution of φ,

q(φ) =
N∏
j=0

q(φj), where

q(φj) = Gamma
(
1
2

+cφ ,
1
2
〈α2

i 〉α+dφ

)
, for j = 1, . . . ,N .

(19)

Following [16] and using (17), the variational posterior
distribution of γ ,

q(γ ) = Gamma
(
N
2

+ cγ ,
1
2
〈‖e‖2〉α,β + dγ

)
, where

‖e‖2 = ‖t − KT
β α‖2.

(20)

All the expectations above are determined using
〈α〉α , 〈ααT 〉α , 〈φ〉φ , and 〈γ 〉γ , which are available from the
distributional forms of q(α), q(φ), and q(γ ) in (18) – (20).
Specifically,

〈α〉α = μα , 〈ααT 〉α = �α + μαμT
α ,

〈φj〉φj =
1
2 + cφ

1
2 ((�α)jj + (μαμT

α )jj) + dφ

,

〈γ 〉γ =
N
2 + cγ

1
2 〈‖e‖2〉α,β + dγ

,

〈‖e‖2〉α,β =
N∑

n=1
t2n − 2

N∑
n=1

tn
3∑

m=1
〈βm〉β〈αT 〉αkmn

+
3∑

m=1

3∑
l=1

〈βmβl〉β	ml,

	ml =
N∑

n=1
kTmn〈ααT 〉αkln.

Instead of q(β), its non-normalized version q∗(β) is
available from [16] as

q∗(β) =
3∏

m=1
βam−1
m exp

(
− 〈γ 〉γ

2
(
βT�β−2βTb

))
, where

	ml =
N∑

n=1
kTmn〈ααT 〉αkln, form, l = 1, 2, 3 and

bm = 〈αT 〉αKmt, form = 1, 2, 3.
(21)

Following [16], calculate 〈β〉β , 〈logβ〉β , and 〈ββT 〉β , as
follows. Sample S β ’s from Dirichlet(a1, a2, a3) and esti-
mate the expectations as 〈f (β)〉β ≈ ∑S

s=1 f (βs)w(βs)

where f (β) ≡ β , logβ , andββT , respectively, and

w(βs) = exp
( − 〈γ 〉γ

2
(
βT
s �βs − 2βT

s b
))

∑S
i=1 exp

( − 〈γ 〉γ
2

(
βT
i �β i − 2βT

i b
)) .

The analytic tractability of q(α,β ,φ, γ |t,X,Y, cφ , dφ , cγ ,
dγ , a1, a2, a3) in variational inference guarantees that the
marginal variational distribution (or likelihood) of the
data q(t,X,Y|cφ , dφ , cγ , dγ , a1, a2, a3) is also analytically
tractable. Estimate hyperparameters cφ , dφ , cγ , dγ , a1, a2,
and a3 as

argmax
cφ ,dφ ,cγ ,dγ ,a1,a2,a3

log q(t,X,Y|cφ , dφ , cγ , dγ , a1, a2, a3),

which is the type II maximum likelihood procedure as
recommended in [16]. The kernel parameters {σ 2

i }3i=1
are learned respectively from three RVMs for each of
the three sources using cross-validation as recommended
by [15].

Additional files

Additional file 1: mRNA-miRNA-predicted-interactions.xlsx. Excel file
containing all predicted mRNA and microRNA interactions flagged as
significant in our analysis. The file is available at: http://odin.mdacc.tmc.
edu/~vbaladan/Veera_Home_Page/Software_files/mRNA-miRNA-
predicted-interactions.xlsx.

Additional file 2: hrvm-0.1.1.tar.gz. R package for fitting H-RVM
available at: http://odin.mdacc.tmc.edu/~vbaladan/Veera_Home_Page/
Software_files/hrvm_0.1.1.tar.gz.
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