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Abstract

We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis
framework that incorporates the biological relationships among the platforms to identify genes whose expression is
related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to
increased statistical power in finding these predictive genes, and further provides mechanistic information about the
manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by
this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and
identify several genes potentially associated with the patients’ survival. We find 12 positive prognostic markers
associated with nine genes and 13 negative prognostic markers associated with nine genes.
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1 Introduction

The central dogma of molecular biology summarizes
the steps involved in the passage of genetic information
at a molecular level: DNA is transcribed to messen-
ger RNA (mRNA), which is then translated to a pro-
tein, which carries out a specific action in an organism.
In addition, there are also other alterations and inter-
ferences, such as epigenetic factors, that can occur at
the DNA and/or mRNA levels which affect the ultimate
expression of a given gene. In this paper, we consider
methylation (which occurs at the DNA level and typ-
ically results in a silencing of the gene), copy number
(which describes an attribute at the DNA level that affects
mRNA expression), and mRNA expression (which affects
protein expression); these subsequently affect a clinical
phenotype (e.g., survival) (see Figure 1). In addition, it
is believed that the mechanism of cancer development
is complex and involves multiple genes [1]. It is known
that genes interact and are related through certain path-
ways, and in this paper, we focus on genes from important
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signaling pathways that influence cancer progression and
development [2].

Current technologies allow us to obtain data from
the above-mentioned platforms (and many others) for
each gene involved in the investigations. The Cancer
Genome Atlas (TCGA) is a project that began in 2006
to gather comprehensive genomic data using multiple
platforms on over 20 types of cancer [3]. The increas-
ing availability of such data has motivated the devel-
opment of methods that seek to improve estimation
and prediction regarding genomic effects on cancer out-
comes by integrating data from multiple platforms in a
single analysis. The incorporation of information from
more than one platform has the potential to increase
power and lower false discovery rates in identifying mark-
ers related to clinical outcomes for cancer patients [4];
such improvements would deepen our understanding of
how cancer develops and spreads, offering researchers
valuable insight regarding the development of drugs
and procedures intended to prevent or inhibit cancer
development.

Some integration techniques consider different plat-
forms sequentially and then draw conclusions from the
combination of results. For example, the TCGA Research
Network performed a large-scale study of ovarian cancer
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Figure 1 Platform relationships. Schematic representation of the
multiple molecular platforms and their biological relationships.

data, including specific platforms such as gene muta-
tions, copy number, mRNA expression, miRNA expres-
sion, and DNA methylation. Within each platform, they
compared normal and tumor cells to identify signif-
icant genes and combined the information obtained
from different platforms to understand the deeper biol-
ogy behind the cancer mechanisms, including gene
interactions. Using the prevalence of significant genes,
they also identified influential pathways, including the
RB1 and PI3K/RAS pathways [5]. TCGA Research Net-
work conducted a similar style study on Glioblastoma
Multiforme (GBM) data and, among other things, dis-
covered a previously unknown link between MGMT
methylation and the mutation spectra of mismatch repair
genes through the integration of mutation, methylation,
and clinical treatment data [6]. These methods pro-
vide insight into the roles and interactions of genes
as related to the development and outcome of the
disease.

Another type of integrative method proposes incor-
porating multiple platforms in a single model. Such
approaches must face the challenges of high dimen-
sionality and complex biological relationships both
within and between platforms. One such approach is
iCluster, proposed by Shen et al., which is a joint
latent variable model-based clustering method that inte-
grates data from multiple genomic platforms to clus-
ter samples into subtypes. iCluster achieves reduced
dimension of the data, and it is shown to identify
potentially novel subtypes of breast cancer and lung
cancer [7]. However, this method does not directly
model the biological relationships among platforms;
in addition, it is an unsupervised method, while our
approach is supervised. Tyekucheva et al. suggest a
method that includes multiple platforms as predic-
tors in a logistic regression model (with phenotype as
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the response), and they show that incorporating mul-
tiple platforms yields more power to detect differen-
tially expressed genes than approaches that only use
a single platform [8]. As with iCluster, this approach
accounts for dependence between platforms, but it
does not directly take into account their biological
relationships.

Another method, proposed by Lanckriet et al., first
represents data from each platform (such as primary pro-
tein sequence, protein-protein interaction, and mRNA
expression) via a kernel function and then combines
the kernels in a classification model (predicting, for
example, protein type). It is shown that this method
outperforms methods based on a single kernel from
any one data platform [9]. However, this method does
not directly model the relationships among the plat-
forms, and kernel representations of the marker effects
on the clinical outcomes are not directly interpretable.
Liu et al. suggest another approach that integrates clin-
ical covariates and multiple gene expressions (from a
common pathway) to predict a continuous outcome
through a semiparametric model; the covariates are mod-
eled parametrically, and the pathway effect is mod-
eled through least squares kernel machines (LSKM)
(either parametrically or not). The covariate as well
as pathway effects can be estimated, and the pathway
effect can be tested for significance. The nonparametric
LSKM regression allows for complicated interactions
between genes [10], but this method only incorpo-
rates a single genomic platform (and accounts for
its internal biological relationships). Recently, Wang
et al. proposed an integrative Bayesian analysis of
genomics data (iBAG) framework that models the bio-
logical relationships between two platforms [4]. This
approach involves a global gene search and uses vari-
able selection via the Bayesian lasso-based shrinkage
priors to deal with the high dimensionality of the
data.

In this paper, we introduce a generalized version of
iBAG that integrates data from an arbitrary (multi-
ple) number of genomic platforms using a hierarchi-
cal model that incorporates the biological relationships
among them. We focus our analysis on genes from sev-
eral important cancer signaling pathways and integrate
mRNA, methylation, and copy number data to pre-
dict survival in GBM patients. In addition, we reduce
dimension by regressing the clinical outcome on latent
scores of the platforms (see Section 2.1 for details). To
improve effect size estimation and to achieve sparsity, we
use a Normal-Gamma (NG) prior for the effects, which
increases flexibility in the estimation as compared to the
Laplace prior of the Bayesian lasso [11] (see Section 2.2
for further discussion). Section 3 illustrates our method-
ology on a synthetic example; analysis of GBM data is



Jennings et al. EURASIP Journal on Bioinformatics and Systems Biology 2013,2013:13

http://bsb.eurasipjournals.com/content/2013/1/13

presented in Section 4; and conclusions are drawn in
Section 5.

2 A multivariate iBAG model

Our construction of a multivariate iBAG model employs
a two-component hierarchical model where the first com-
ponent can be considered as the mechanistic model and
the second can be considered as the clinical model.
In the first stage mechanistic model, we partition each
gene’s expression into the factors explained by methy-
lation, copy number, and other (unknown/unmeasured)
causes using a principal component-based regression
model. Subsequently, we include these factors as pre-
dictors in the second stage clinical model, thus finding
not only those genes whose expression is directly related
to clinical outcome, but also expression effects driven
by methylation, copy number, or other mechanisms. We
explain the construction of each of these components
below.

2.1 Mechanistic model

Let n = number of patients, / = number of platforms
being integrated, and p; = number of genes from plat-
form j. The mechanistic model for each gene can be
expressed as:

mRNA; = M; +CN; + O;,

where each of the terms are defined as follows:

e mRNA; is the level of gene expression for gene i
(wherei=1,...,max(p;); j=1,...,J) and is of
dimension (1 x 1).

® M; is the part of gene; expression that is attributed to
methylation, and is of dimension (# x 1). Specifically,
M,; is the product of some methylation predictor and
a fitted coefficient. Details are below.

e CN; is the part of gene; expression that is attributed to
changes in copy number, and is of dimension (n x 1).
Specific calculation is similar to M; — see below.

e O; represents the ‘other’ (remaining) part of the gene
expression that is explained by something other than
methylation or copy number, and is of dimension
(n x 1).

Since the raw methylation and copy number data for
any given gene can contain multiple (up to 40 in our
data) values from different markers within that gene, to
estimate each of the components M;, CN;, and O;, we
first carry out two principal component analyses (PCA)
for gene;: one each for the methylation and copy number
data, and in each case, we keep the number of principal
components that retain > 90% of the total variation. We
then regress mRNA; on the methylation and copy number
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PC scores. We use the estimated pieces and the corre-
sponding residuals from this regression to estimate the
vectors M; = ZIk(:l X i,kBkM (where Xﬁ is the methyla-
tion value for gene i with K = 1 if there is only one
methylation marker for that gene, or the methylation score
for principal component k for gene i if there are multi-
ple methylation markers for gene i, and BQ/I is the vector
of regression coefficients), CN; = Y * | XENBEN (where
Xi’C,N is the copy number value for gene i with R = 1
if there is only one copy number marker for that gene,
or the copy number score for principal component r for
gene i if there are multiple copy number markers for gene
i, and BN is the vector of regression coefficients), and
O; = residuals. This process is repeated for each gene
independently.

2.2 Clinical model

The clinical model component of our construction relates
the effect of the mechanistic parts of the genes (as esti-
mated above) to a clinical outcome of interest (e.g., sur-
vival, in our context) and can be written as:

Y:MBI+CNﬂ2+Oﬂ3+€;

where Y denotes the clinical outcome, B; are the effects
of platform j on Y, and € is the error term. The covari-
ates in the model {M, CN, O} are the vectorized gene
expression effects attributed to methylation, copy num-
ber, and other sources, respectively, and are estimated
from the mechanistic model. In essence, our clinical com-
ponent jointly (additively) models the effects of all the
gene expressions and their components - derived from dif-
ferent sources (methylation/copy number) - in a unified
manner. When the clinical response is survival, we use
an accelerated failure time (AFT) model, taking Y to be
log(survival) [12].

Our goal is to find a list of significant genes that affect
the outcome via the various mechanisms; hence, efficient
estimation of B = {B1, B, B3} is of primary interest. One
route would be to simply fit a least squares regression to
estimate the parameters. However, the number of predic-
tors is large compared to the number of samples, and,
more importantly, we expect our solution to be very sparse
since only a few genes will be related to clinical response;
hence, least squares would overfit the data and yield less
accurate results as compared to approaches that induce
sparsity by shrinkage/penalization. We illustrate this fact
in our simulation in Section 3.

To induce shrinkage/penalization, we follow a Bayesian
approach and specify particular prior distributions for
each model parameter in the clinical model and sam-
ple from the posterior distribution using Markov Chain
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Monte Carlo (MCMC). There are several priors known
to achieve sparsity and facilitate Bayesian variable selec-
tion, which we will discuss briefly. One option is to simply
put vague Normal(0, 0o) priors on each regression coeffi-
cient. This is equivalent to doing least squares regression
and is impossible in cases where there are more vari-
ables than data points, because singular solutions arise.
A natural extension is to place proper mean-zero Nor-
mal priors on the coefficients, which is equivalent to
ridge regression. Although accommodating more predic-
tors than data points and facilitating shrinkage, the type
of shrinkage is linear which is not desirable in the current
settings. This linear shrinkage leads to more shrinkage
and thus greater bias for larger coefficients, while in this
setting, we desire the opposite: less shrinkage for large
(significant) coefficients and greater shrinkage for smaller
(non-significant) ones. This type of non-linear shrinkage
can be accomplished by various priors. One is the ‘spike
and slab’ prior consisting of a mixture of a point mass
at zero (the spike) and a Normal (the slab). Although
this can accommodate a large number of predictors and
avoids linear shrinkage, the shrinkage asymptotes to a
constant which still results in attenuation of the truly large
effects, something we want to avoid. In addition, compu-
tational complications and difficulties accompany the use
of spike and slab priors. As we show below, all but one of
our complete conditional distributions are in closed form,
so we can avoid the computational difficulties associated
with the spike and slab method, as well as the attenu-
ation of large effects, by utilizing continuous shrinkage
priors.

A widely known method that places a continuous spar-
sity prior on the regression coefficients is the Bayesian
lasso [13], which is incorporated by assigning a dou-
ble exponential (i.e., Laplace) prior to B. When pos-
terior modes are used as the coefficent estimates, this
process yields the same solutions as Tibshirani’s lasso
[14]. The Bayesian lasso has proven to perform well in
conducting adaptive shrinkage-induced sparsity, but the
single hyperparameter formulation does not allow for
enough flexibility to estimate the true size of poten-
tially large, non-zero effects. Instead, these effect esti-
mates are shrunk toward zero along with the smaller
effects [11]. An alternate class of priors we use and
discuss is the Normal-Gamma (NG) prior distribution
for B. Incorporating this continuous prior not only pro-
vides shrinkage of the coefficients but the extra hyper-
parameter in the NG prior construction facilitates more
adaptability in the estimated shrinkage relative to the
Bayesian lasso [13] - with the NG, the larger effects are
shrunk less than the smaller effects [15], thus leading to
improved estimation [11]. In summary, the NG prior is
extremely advantageous in our situation, since it delivers
the sparsity we need, while leaving larger effects mostly
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unshrunk, thus aiding our estimation of the important
effects.

For our method, we assign a Normal-Gamma (NG)
prior distribution for each B;. Our complete hierarchical
clinical model can be written as:

Y = Normal (X8, ozln);

B = Normal(03, Dy,) where
Dw = diag(¥1,1,- - -, 1,01,[,1, oY,
Y = Gamma(};, 1/(2;/}«2))

o’ = InverseGamma(a, b),

V)i

A; = Exponential(c),
y;? = Gamma(a, b/(2x))),

where p = 2;21 pj is the total number of predictors
in the model. (Note that the double exponential prior
of the Bayesian lasso would be constructed by assigning
B;,il¥ji ~ Normal(0, ;) and v;; ~ Exponential(};). The
single parameter in the exponential prior (1)) is the reason
such a construction has limited flexibility as compared to
the NG prior which is parameterized by both A; and y;.)
With the NG formulation as given above, the complete
conditionals for most parameters are available in closed
form - we can use Gibbs sampling to update all parameters
except A;, which we update using a Metropolis-Hastings
random walk step. More details for drawing MCMC sam-
ples are available in Appendix B.

2.3 Gene selection

Given the posterior samples from the MCMC, we deter-
mine which genes are significantly related to clinical out-
come using a method based on the median probability
model [16]. First, we define a minimum effect size which is
driven by practical considerations. Since we are analyzing
survival data, we use AFT models using log(survival) as
the response; thus, a §-fold or larger change in survival for
a unit increase in a predictor corresponds to a §;; outside
the region (log(1-8), log(1+6)), where B;; is the regres-
sion coefficient for platform j of gene i. Denote this region
(6%,8%). (In our following analyses, we use § = 0.05 which
corresponds to a 5% change in survival time.) If S is the
number of MCMC samples and ﬁﬁ) is the B;; sample from

iteration s, then p (xj;) = Zle I(ﬁj(s.) > 8%)/S is the

14
»

posterior probability that g;; is higher than the practical
cutoff 8% . Similarly, p_ (xj,;) = Zss=1 I(,Bj(j) < §*)/S is the
posterior probability that f;; is lower than the practical
cutoff §* . We flag a gene as ‘significant’ if py (x;;) > 0.5 or
ifp, (xj,i) > 0.5.

Algorithm 1 provides a concise summary of implement-
ing the multivariate iBAG model and conducting gene
selection.
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Algorithm 1 Method implementation

Input: Raw data matrices, one for outcome (survival) and
one for each platform (mRNA, methylation, copy number)
(Rows are patients, and columns are markers arranged by
gene.), number of patients #, number of platforms /, num-
ber of genes in platform j p;, number of MCMC samples
S, number of MCMC samples to use as burn-in B, and
practical effect size 5.

Output: Prognostic markers with high posterior probabil-
ity of having prespecified practical effect size.

Prepare data:

- Impute missing data (see Appendix A).

- For methylation and copy number platforms:

- For each gene i:

- Perform principal component analysis (PCA) on
platform j. Keep the number of components that
account for > 90% of the variation.
- Get PC scores associated with retained compo-
nents. Call matrix of scores M* for methylation
and CN* for copy number, where the number of
columns is the number of score vectors.

- Repeat for any other platforms available upstream of

mRNA.

Fit mechanistic model:

- For each gene i:
- Use least squares to regress response platform
(mRNA) on M* and CN*. (Note that the modeled
relationship should reflect the biological relation-
ships between platforms.)
- Let M be the linear combination of predicted
coefficients and M*, CN be the linear combination
of predicted coefficients and CN*, and O be the
residuals.

Standardize M;’s, CN;’s, and O;’s. There should be Z,]'=1 bj
of these predictors.

Log-transform survival responses and mean-center.

Fit clinical model:

- Draw S MCMC samples from the complete conditionals
(see Appendix B), using the first B samples as burn-in, to
fit the AFT model and obtain S — B posterior samples of
regression coefficients §;,;.

Marker selection:
- Given practical threshold 8§, compute §* = log(1 — §)
and 8% = log(1 + 8).
- For each marker:
- Calculate Pr(8;; > 6%) and Pr(B;; < &%) using
posterior samples.
- Flag marker if either calculated probability is
greater than 0.5.

return: identified markers
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3 Simulation

We investigate the shrinkage properties of our Bayesian
penalized regression formulation of the clinical model as
compared to least squares regression, Bayesan lasso, fre-
quentist lasso, and frequentist elastic net through a sim-
ulation. We simulate a training dataset with 90 predictors
(J = 3 platforms with p; = py» = p3 = 30 predictors from
each), where 30 randomly selected ;s are set exactly to
0 and the other 60 are sampled from a Laplace(u = 0,
b = 1/7) distribution; this reflects the effective spar-
sity we expect to see in our data. The other settings for
the simulated data are # = 100, 62 = 1, each X entry
is from Normal(0,1), and Y = Normal(Xg,c2I,). The
test dataset used to assess performance is simulated with
the same settings as the training data, but n = 400. We
applied our method for estimating the parameters in the
clinical model, using 10,000 iterations of the Gibbs sam-
pler with 500 for a burn-in period. For both the frequentist
lasso and elastic net, we ran the simulation with two stan-
dard choices for the penalty parameter A: (1) ‘1 SE’ where
we used the largest A with cross validation error within
one standard error of the minimum cross validation error
and (2) ‘min’ where we used the A with minimum error
(from cross validation). For elastic net, we set the mixing
parameter (that controls the mixture of penalties) to 0.5.
The results of our method are compared to those of the
other methods in Table 1.

We see that our method gives a good estimate of o2
(recall 02 = 1). We also note that the least squares regres-
sion yields coverage probabilities that are too high, while
the frequentist coverage probabilities of the Bayesian
credible intervals are close to the nominal levels. (Note
that for the frequentist lasso and elastic net, it is not
possible to obtain standard errors for the coefficients set
to 0, and therefore, we cannot construct the CI’s.) For
all methods (other than least squares), the MSE ratio is
less than 1 for the training data but much greater than 1
for the test data; this is consistent with the idea that in
this high dimensional setting with expected sparsity, least
squares tends to overfit the training data, while methods
that perform shrinkage lead to improved estimation on
the test data and thus yield results more applicable to the
overall population. Considering that the MSE ratio is the
mean squared error from least squares divided by the MSE
from the respective method, we see that our method has
the best (largest) MSE ratio on test data, which for our
purposes is the most relevant comparison criterion.

We also see excellent shrinkage properties of our
method in Figure 2; most least squares coefficient esti-
mates (which are the maximum likelihood estimates) are
far from the true parameter values, while the posterior
means from our method shrink these estimates closer to
the true values. The non-linear shrinkage and flexibility
provided by the NG prior facilitate more shrinkage near 0
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Table 1 Simulation results

o2 95%Cl 90% ClI MSE ratio MSE ratio

coverage coverage (train data) (test data)

Our method 0.9073 0.9778 0.8889 0.2827 9.4630
Maximum likelihood 0.1181 1.00 0.9667 1 1
Bayesian lasso 0.6407 0.9667 09111 03727 8.858
Freq. lasso (1 SE) 1.2020 NA NA 0.0983 8.1163
Freg. lasso (min) 0.6379 NA NA 0.1851 8.8374
Freq.EN (1 SE) 09278 NA NA 0.1273 84439
Freg. EN (min) 0.7012 NA NA 0.1684 8.7154

Freq. EN means fregentist elastic net, which was run with mixing parameter (for penalty mixture) 0.5. The estimate of a2 is the posterior mean for our method and the
Bayesian lasso. For the others, it is the mean sum of squared error. ‘Cl' is credible interval for Bayesian methods and confidence interval for frequentist methods. Note
that for the frequentist lasso and elastic net, it is not possible to obtain standard errors for the coefficients set to 0, and therefore, we cannot construct the Cl's. The
penalty choice of ‘1 SE’ means we used the largest parameter with error within one standard error of the minimum error, while ‘min’ means we used the parameter
with minimum error (from cross validation). MSE ratio is the mean squared error from least squares divided by the MSE from the respective method. NA indicates not

applicable.

without severe attenuation of the estimates for truly large
regression coefficients.

4 Integrative analysis of GBM data

GBM is one of the most common and most malig-
nant brain tumors. The American Cancer Society esti-
mates that in the year 2013, there will be 23,130 new
cases of brain and other nervous system cancers in the
USA and that 14,080 Americans will die from such
cancers [17]. GBM tumors make up 17% of all pri-
mary brain tumors [18], and prognosis is typically very
poor; a study with 7,259 patients, each diagnosed with
GBM from 2005 to 2008, found a median survival
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Figure 2 Simulation results. Least squares estimates and posterior
means from our method are plotted against the true 8 values. The
vertical lines denote the difference between the estimates from each
method thus indicating the shrinkage properties of the NG prior.

time of 14.6 months for patients who received tumor-
directed surgery and radiation therapy and a median
survival time of 2.9 months for patients who did not
receive any radiation treatment [19]. Treatment options
include surgery, radiation, and/or chemotherapy, but even
for a patient receiving more than one of these treat-
ments, the outlook is dismal at best. Finding prognostic
biomarkers related to cancer development and patient
survival is an important issue, and GBM was one of
first cancers to be studied in TCGA. The data currently
available contains information from multiple molecu-
lar platforms (genomic/epigenomic/transcriptomic) as
well as clinical data on several hundred tumor samples
(approximately 500).

The availability of such extensive genomic data has
prompted several studies using the TCGA GBM data,
and fortunately, there continue to be discoveries of
biomarkers that aid in predicting survival and iden-
tifying subtypes of GBM. One such study conducted
by Verhaak et al. combined gene expression data from
multiple types of microarray assays to classify tumors
into four distinct subtypes (each responding differ-
ently to therapy) and to discover which gene expres-
sion levels had a significant impact on the classification.
Other platforms were also used, such as copy number
and mutations, in separate analyses to test for associa-
tions with subtype [20]. Another study by Noushmehr
et al. used the available GBM DNA methylation data
to identify a subgroup of GBM tumors associated
with a significantly longer survival time [21]. In our
integrative analysis, we use 163 matched tumor sam-
ples that have been assayed by expression, methyla-
tion, and copy number platforms as described below.
Each of these samples has an uncensored survival
time (in days), and our aim is to identify prognostic
biomarkers.
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4.1 Description of data

Our copy number data is level 2 data from the
HG_CGH_244A platform; it is the normalized signal for
copy number alterations of aggregated regions per probe.
Our methylation data is level 3 data from the Human-
Methylation27K arrays; it is the methylated sites along
a gene (probe level data). Our expression data is level 3
data (summarized per gene) from the Affymetrix profiled
HT_HG_U133A platform [22].

We focus our analysis on data corresponding to 49
genes implicated in important signaling pathways in GBM
(RTK/PI3K, P53, and RB pathways [2]), using the follow-
ing structure:
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One gene has no methylation data, so we remove that
column from the X matrix, which essentially sets M; to
be 0 for that gene. Any effect that may be due to methyl-
ation for that gene would then be captured by the ‘other’
predictor in the clinical model. After standardizing the
predictors and imputing the (few) missing values, we
model the data using an AFT model with log survival
times as the outcome and apply our method of estimating
the parameters of the iBAG model.

4.2 Results using iBAG model

After applying our method to the GBM data, we then use
the method discussed in Section 2.3 to determine the sig-
nificant markers using § = 0.05 (corresponding to a 5%

1. OurSurvival (163 x 1), containing days of survival change in survival time). Figures 3 and 4 show the poste-
after diagnosis for each patient. rior probabilities of the effect (8;;) being greater than §%
2. OurMRNA (163 x 49), containing mRNA expression  and less than §*, respectively. Figure 5 depicts the pos-
levels for each gene (columns) for each patient (rows).  terior means of the g;;’s and also indicates which were
3. OurMeth (163 x 176), containing data on the flagged as significant. We find 25 markers to be signif-
methylation markers (columns) for each patient icant, 12 with positive effects on survival (more expres-
(rows). There can be multiple (ranging from 1 to 21) sion attributed to that platform, better prognosis) and 13
methylation markers per gene, and the columns are with negative effects (more expression attributed to that
ordered by gene. platform, poorer prognosis). The genes with the 12 pos-
4. OurCopyNumber (163 x 524), containing copy itive markers were PDGFRB, FGFR1, CCND2, PIK3R2,
number data (columns) for each patient (rows). IRS1, CDKN2C, TP53, PIK3CA, and PDGFRA. The genes
Again, there are multiple (ranging from 1 to 43) PDGEFRB, FGFR1, and CCND2 were determined to be
values per gene, and the columns are ordered by gene.  related to clinical outcome through methylation effects,
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Figure 3 GBM data results. The posterior probabilities (based on MCMC samples) that g; > 87 is plotted, where §;; is the clinical model regression
coefficient for the marker associated with platform j of gene j, and 6% = log(1 + 8) is the transformed upper practical cutoff. For our analysis, we use
8 = 0.05, which corresponds to a 5% change in survival time, so the posterior probability shown here indicates the probability that a one unit

increase in the marker results in at least a 5% increase in survival time. We consider the marker j, i to be significant if this probability is greater than 0.5.
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Figure 4 GBM data results. The posterior probabilities (based on MCMC samples) that g;; < 8* is plotted, where g;; is the clinical model regression
coefficient for the marker associated with platform j of gene i, and §* = log(1 — &) is the transformed lower practical cutoff. For our analysis, we use
§ = 0.05, which corresponds to a 5% change in survival time, so the posterior probability shown here indicates the probability that a one unit

increase in the marker results in at least a 5% decrease in survival time. We consider the marker j, i to be significant if this probability is greater than 0.5.
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Figure 5 Regression coefficient posterior means. The estimates of the regression coefficients in the clinical model (8;;s) are shown, where g;; is
the coefficient for the marker associated with platform j of gene Jj; the estimates are computed as the posterior means from our MCMC samples. The
multiple platforms for each gene are labeled by color, and solid plot markers indicate that the effect was found to be significant, meaning that the
posterior probability that a one unit increase in the marker results in at least a 5% change in survival time is at least 0.5.
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while expressions of PIK3R2, IRS1, CDKN2C, and TP53
were related to clinical outcome through copy number.
For PIK3CA, PDGFRA, PDGFRB, CCND2, and TP53,
gene expression was related to clinical outcome through
some other unspecified mechanism. The genes with the
13 negative markers were IGF1R, FGFR2, ARAF, GRB2,
FGFR1, HRAS, MDM2, PDPK1, and RAF1. The first
four were related to clinical response through methy-
lation, while FGFR1, HRAS, ARAF, and MDM2 were
related through copy number, and PDPK1, IGF1R, FGFR2,
RAF1, and MDM2 were related through some mechanism
other than methylation or copy number. Note that eight
genes (IGFIR, PDGFRB, FGFR1, FGFR2, ARAF, CCND2,
MDM?2, and TP53) are found to be significant on two or
more different platforms. We have not only identified 17
genes as having a significant effect on survival (Table 2),
but we have also determined which platform(s) of those
genes is (are) modulating the effect.

4.3 Biological interpretation

There are a total of 17 genes found to affect the expres-
sion of glioblastoma tumors significantly. Of these, nine
genes are negatively affecting the survival and nine genes
are affecting the survival positively. The positive and neg-
ative prognostic markers are reviewed within the context
of glioblastoma biology in this section.

Negative prognostic markers: Fibroblast growth factor
pathway signaling is associated with significant tumor
enhancement in glioblastoma [23]. Fibroblast growth fac-
tor receptors FGFR1 and FGFR2 play an oncogenic role
in various tumor types and can be targeted by multiple
small molecules in cancer therapy [24]. FGFR1 expres-
sion can be regulated by methylation level of the upstream
CpG island [25]. Hyper-methylation of FGFR1 would pro-
vide positive effects by reducing the expression level of
FGFR1 and thus appear to be affecting the survival in
both ways. Insulin-like growth factor receptor 1 (IGF1R)

Table 2 Gene results

Gene names

AKT1 MLLT7 EGFR BRAF CCND2
AKT2 PIK3CG ERBB2 RAF1 CDK4
AKT3 PDPK1 ERBB3 GRB2 CDK6
PIK3CA IRST FGFRI1 NF1 RB1
PIK3CB SRC FGFR2 CBL MDM2
PIK3CD GABI MET SPRY2 MDM4
PIK3R1 PTEN NRAS CDKN2A TP53
PIK3R2 IGFIR HRAS CDKN2C PIK3C2B
FOXO1A PDGFRA KRAS CDKN2B PIK3C2G
FOXO3A PDGFRB ARAF CCND1

All 49 genes appearing in the data are listed. Italic genes were identified by our
method to have at least one significant marker.
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is a well-known target to treat GBM and has been found
to be associated with astrocytoma and meningioma as
well [26]. It is also associated with anti-EGFR resistance
in GBM and is a pan-cancer biomarker connected with
many different tumor types [27,28]. MDM2 is a well-
known oncogene and inhibitor of the tumor suppressor
TP53. Previous studies in glioblastoma using expression
and copy number platforms indicated the abnormal over-
expression and amplification of MDM2 [29,30]. ARAF is a
serine/threonine protein kinase of RAF family, known to
stabilize the hetero-dimerization of RAF proteins, BRAF
and CRAF [31]. Its role and over-expression are observed
in other tumors but are not explored in the context of
glioblastoma [32]. Growth factor receptor-bound pro-
tein 2 (GRB2) is involved in RAS signaling pathway and
known to be associated with EGFR [33]. GRB2 is an
interacting partner of EGFRVIIL, a common mutated vari-
ant of EGFR in the molecular signaling of EGFR-driven
glioblastoma [34,35].

Positive prognostic markers: The tumor suppressor gene
TP53 is a positive prognostic marker as expected. The
Cyclin-dependent kinase inhibitor CDKN2C, a known
tumor suppressor of glioblastoma, is also identified as
a positive marker [36]. Platelet-derived growth factors
(PDGF) receptors PDGFRA and PDGFRB show positive
survival effects, whose oncogenic role is well established
in the context of glioma [37,38]. These PDGF receptors
are the representative genes of the pro-neural subtype
of glioblastoma [20,39]. Interestingly, the pro-neural sub-
type of glioblastoma is enriched in oligodendroglioma
and has higher survival rates compared to other subtypes
of glioblastoma [40]. The insulin receptor substrate gene
IRS1 is shown to be one of the representative candidates
for mesenchymal subtype of GBM with poor survival [41].
The role of IRS1 is not clear, given that we found it to
be a positive marker in our analysis. Overall, the positive
markers are generally enriched in the pro-neural sub-
type of glioblastoma, which was found to have prolonged
survival [20].

5 Conclusions

In this article, we present a hierarchical Bayesian model
that integrates data from multiple genomic platforms,
incorporating information about the platforms’ biologi-
cal relationships in order to better identify genes that
are critical to patient survival and to additionally provide
mechanistic information on the manner of their effect. In
summary, the key advantages of our method include (1)
multiple platforms are integrated in a single model; (2)
the biological relationships between platforms are taken
into account by the model; (3) high dimensional data
can be handled easily, with shrinkage priors; (4) the NG
prior on the predictors allows for flexible shrinkage of
the parameter estimates; (5) the model can be extended
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to incorporate more platforms, as long as the underlying
biological relationships are well understood; and (6) we
have the ability to not only identify genes significant to
patient survival but also gain mechanistic information on
the manner by which the gene expression is related to
outcome.

Applying our methodology to a GBM dataset from
TCGA, our method identified several genes with effects
that have a significant impact on survival time. In addi-
tion, we identified whether each gene was related to
clinical outcome through methylation, copy number, or
some other mechanism. This is especially advantageous in
investigating the biological mechanisms of cancer devel-
opment and progression, and in subsequent development
of novel therapeutic strategies.

Although beyond the scope of this paper, two areas of
future investigation might include (1) relaxing the para-
metric assumptions by using generalized additive models
instead of linear models or substituting specified paramet-
ric non-linear models if they are justified by the science,
and (2) dynamic modeling, which would require different
types of data and further modeling assumptions to cap-
ture complex patterns of feedback loops both within and
between platforms.

Appendices

Appendix A Data imputation

Since the percentage of missing data is so low (~ 5% for
methylation and ~ 0.1% for copy number), we choose
to do imputation using the following algorithm for both
the methylation data and the copy number data: (1) For
each marker, replace any NA’s with the mean of the other
patients. Call this resulting matrix Temp. (2) Use Temp
to calculate a correlation matrix between markers. (3)
For each marker with missing value(s), regress it on the
three markers which it is most highly positively correlated
with (using the Temp matrix for the predictors to avoid
further complications from missing data). (4) Substitute
this predicted value for the missing value in the original
matrix.

Appendix B Complete conditionals

Blrest ~ Normal{(XTX + ¢2D; ) 1xTY, o2 (XTX
+o2D7hH7Y
o?|rest ~ Inv.Gamma(a = a + n/2,b = b+ {(Y
—XB) (Y —XB)}/2)
Yj,ilrest ~ Gen.Inv.Gaussian(a = yj_%b = ﬂ]%l-,p =1j—1/2),
where V' = Gen.Inv.Gaussian(a, b, p)
has density(a/b)p/zvp_1 exp{—(av + b/v)/2}/
{2Kp(\/%)}, where Kj,(-) is a modified
Bessel function of the second kind.
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Ajlrest ~ (l/Aj)Zz exp [—l;)//_z/(ZAj) — cAj]

P
e ‘ by
x (H w,,;) /[ropw @y ]
i=1
y pj
)/;2|rest ~ Gamma(a = pjA; +a,b = (b/)»ﬁ—Z Vi) /2)
i=1
In the Metropolis-Hastings update step, the pro-
posed value is )Ll’f‘ = exp(ofz)kj where z ~ Normal(0, 1)
and the tuning parameter af is chosen to result
in an acceptance rate between 20% and 30%. The

I . ) )\
acceptance probability is then mm{l, 77:(('\]1 ) (?&{%)

A¥

) AF—A N
((2;/,2)—17/ [T, w;,i) n (;})} where 7 (1)) = (1/1))%
exp{—lS;xj_z/(ij) — cAj}, the prior for ;.

Initial values and hyperparameters
The initial values and hyperparameters are chosen as
follows:

e The hyperparameters for o2 are a = b = 0.001, so as
to be uninformative.
® The hyperparameter for A;is ¢ = 1 [11].

® The hyperparamters for )/172 are z = 2and b = the

mean of the least squares ,31%. [11].

e The initial B is the estimate from the frequentist lasso
with a single shrinkage parameter.

e The initial o2 is the mean sum of squares from the
frequentist lasso.

® Each initial A, ¥, and yj_2 is set to 1.
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