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Abstract

Oscillatory pathways are among the most important classes of biochemical systems with examples ranging from
circadian rhythms and cell cycle maintenance. Mathematical modeling of these highly interconnected biochemical
networks is needed to meet numerous objectives such as investigating, predicting and controlling the dynamics of
these systems. Identifying the kinetic rate parameters is essential for fully modeling these and other biological
processes. These kinetic parameters, however, are not usually available from measurements and most of them have
to be estimated by parameter fitting techniques. One of the issues with estimating kinetic parameters in oscillatory
systems is the irregularities in the least square (LS) cost function surface used to estimate these parameters, which
is caused by the periodicity of the measurements. These irregularities result in numerous local minima, which limit

the performance of even some of the most robust global optimization algorithms. We proposed a parameter
estimation framework to address these issues that integrates temporal information with periodic information
embedded in the measurements used to estimate these parameters. This periodic information is used to build a
proposed cost function with better surface properties leading to fewer local minima and better performance of
global optimization algorithms. We verified for three oscillatory biochemical systems that our proposed cost
function results in an increased ability to estimate accurate kinetic parameters as compared to the traditional LS
cost function. We combine this cost function with an improved noise removal approach that leverages periodic
characteristics embedded in the measurements to effectively reduce noise. The results provide strong evidence on
the efficacy of this noise removal approach over the previous commonly used wavelet hard-thresholding noise
removal methods. This proposed optimization framework results in more accurate kinetic parameters that will
eventually lead to biochemical models that are more precise, predictable, and controllable.

1 Introduction

Oscillatory biochemical pathways are an important class
of biochemical systems [1,2] that play significant roles in
living systems. For instance, “circadian rhythms” are
fundamental daily time-keeping mechanisms in a wide
range of species from unicellular organisms to complex
eukaryotes [3]. One of their most important roles is in
regulating physiological processes such as the sleep-
wake cycle in mammals [4]. “Cell cycles” are also
another vital class of biochemical oscillations. The cell
cycle is the sequence of events by which a growing cell
replicates all its components and divides into two
daughter cells [5]. Inappropriate cell proliferation due to
malfunctioning cell cycle control mechanisms can cause
development of certain types of cancers [5]. There are
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also other classes of biochemical rhythms such as car-
diac rhythms [6], ovarian cycles [7] and cAMP oscilla-
tions [8] that have their own significance in systems
biology.

A complete modeling of a biochemical system
includes characterization of all nonlinear structures of
the network along with the associated kinetic rates. In
other words, without fully identifying all the kinetic
parameter values, these models are still incomplete even
if the full structure of the model has been determined.
Few kinetic rates are available directly from experimen-
tation or literature. Most of them, however, have to be
estimated by parameter fitting techniques to complete
the modeling of the biochemical pathway. Thus, a math-
ematical framework is needed to fit the kinetic para-
meters using the observables. Optimization frameworks
that focus specifically on estimating parameters
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associated with biochemical pathways have received
much attention in recent years [9-14].

Two main issues in estimating kinetic parameters in
biochemical systems are data related issues and compu-
tational issues [14]. The measurement dataset used to fit
these parameters are usually noisy and incomplete. Mea-
surement datasets are also affected by uncertainties
related to experimental conditions such as temperature
and light [14]. Much study is done recently to reduce
noise for different biochemical signals [15-17]. Mostacci
et al. [15] proposed a denoising method for mass spec-
trometry data by integrating wavelet soft thresholding
and principal component analysis. Weng et al. [16] sug-
gested a noise removal approach for oscillatory ECG sig-
nals based on a recently developed method known as
empirical mode decomposition. Ren et al. [17] also
developed a method of denoising biochemical spectra by
introducing a new thresholding function integrated with
the “translation invariant” approach to lower the root
mean square error (RMSE) in the measurements in
comparison to the traditional soft and hard thresholding
methods.

The computational issues include the challenges opti-
mization algorithms face when identifying an optimal fit
to measurement data. There are problems with optimi-
zation methods such as slow convergence toward global
optima, complicated error surfaces and lack of conver-
gence proofs [14]. Much study has been done to address
these issues in parameter estimation in biochemical sys-
tems [12,13,18-21]. Zhan et al. proposed a method to
reduce the computational time of each trial by integrat-
ing the spline functions theory with nonlinear program-
ming to eliminate the need of solving the system of
ordinary differential equations (ODEs) [21]. Rodriguez-
Fernandez et al. [12] suggested a hybrid optimization
method to speed up the convergence toward the global
optima. A variety of different algorithms has also been
adapted to perform the inverse problem. A comprehen-
sive list of such studies is provided in [14].

Furthermore, heuristic approaches have been devel-
oped to address the optimization problem in fitting
parameters in oscillatory systems [9-11]. These methods
improved the optimization by constructing error func-
tions based on the features extracted from the data.
Locke et al. [11] proposed a cost function based on the
comparison of entrained period, phase and strength of
oscillation for the circadian clock in Arabidopsis thali-
ana. Also, Zeilinger et al. [10] performed another para-
meter estimation approach for the A. thaliana model by
investigating amplitudes of some species in dark/light
cycles, periods under dark and light conditions and the
period of one mutant phenotype under constant light.
In [9], Bagheri et al. built up an optimization process to
model Drosophila melanogaster circadian clock by
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defining three cost functions based on free running per-
iod, light/dark entrained period, differences in amplitude
and differences in the phase of the components in the
system. These methods are more applicable for pro-
blems where characteristics in the system and/or data
can be exploited to improve the performance of the
parameter estimation. These methods, however, require
more information about the system than purely data-
driven comparison methods. For instance, the cost func-
tion proposed in [9] needs the period information of
both the light and dark cycles of their investigated
model, which requires a greater level of first principles
knowledge. These methods are also model specific,
which makes it difficult to apply them to general oscilla-
tory systems. For example, the dark/light cycle charac-
teristics that were introduced in parameter fitting
problem of [10] may not be a suitable feature for para-
meter fitting of non-circadian biorhythms.

This article focuses on the problem of estimating the
kinetic parameters in oscillatory biochemical systems.
We show that periodicity in the measurements of oscil-
latory systems results in irregularly surface properties of
the LS cost function leading to numerous local minima.
These multiple local optima cause premature conver-
gence of even robust optimization algorithms. This
eventually results in incorrect estimates, bad predictions
of dynamics, and incorrect acceptance of functional
hypotheses. This, compounded with uncertainties or
noisy measurements leads to a difficult estimation pro-
blem to solve.

We develop a parameter estimation framework to
address these issues by integrating information of oscil-
latory systems in the modeling process (parameter esti-
mation and denoising). This periodic information is
used to build a cost function with better surface proper-
ties. Our proposed cost function takes advantage of the
basic properties of these oscillatory systems, which
allows us to generalize our cost function to a variety of
biochemical systems with sustained oscillations. The
proposed cost function also needs less first principles
knowledge to generate the cost function in comparison
to the previous methods that was developed for oscilla-
tory systems [9-11]. We verified for three oscillatory
biochemical systems that our proposed cost function
results in increased ability to estimate accurate kinetic
parameters as compared to the traditional LS cost func-
tion. We combined this cost 6 function with an
improved denoising method that also leverages periodic
characteristics embedded in the measurements to effec-
tively reduce noise. The results provide strong evidence
on the efficacy of this noise removal approach over the
previous commonly used wavelet hard-thresholding
noise removal method. This proposed optimization fra-
mework results in more accurate kinetic parameters that
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will eventually lead to biochemical models that are more
accurate, predictable, and controllable.

2 Methodology
This study considers deterministic, nonlinear oscillatory
biochemical pathways described by ODEs as shown in

(1):
x(t) = f(x(t), p)

Xg = X(to).

to <t <t

(1)

Here, x € R™*! is the state vector of the m compo-
nents of the pathway, p e R”! is the vector of # kinetic
parameters, f: R”>*! — R”*! is a nonlinear vector func-
tion, X, € R™*! is the vector of the initial component
concentrations at time f, and ¢, < t < £, represents the
time of interest.

Optimization describes the approach of estimating the
kinetic parameters (p) of the system described in (1)
that cannot be measured directly using a set of experi-
mental data. The criteria for verifying the quality of the
estimates is often an error function such as ® as shown
in (2). This function quantifies the ability of the esti-
mates to reproduce the same results as the measure-
ments. This objective function is minimized such that
p = presults in the minimum value of @. In that way, p
is called the estimated point.

p = argmin &(p) @

One of the most common cost functions is the least
square (LS) estimator [22]. This estimator is based on
the sum of the squares of the point by point errors
between measured experimental data and the simulated
measurements from the estimated model as described in

(3):

N, Np
(p) = > > (% —&5(p))”. 3)

i=1 j=1

Here, x;, is the measurement at time j of the ith state
of the system, Xj is the reproduced data at time j for
the ith state of the system given some parameter p, N,,
is the number of time points where measurements are
obtained and N, is the number of measured outputs (in
this manuscript, they are considered to be the measured
states of the system).

The objective of this article is to propose a method to
estimate the kinetic parameters for a given oscillatory
biochemical system of the form (1) using the noisy mea-
surements of the system states. We first captured peri-
odic information of the measurements. This information
is used to improve noise reduction and generate an
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error cost function with better optimization properties.
The next step implements a modified wavelet hard
thresholding denoising approach that uses the previously
obtained periodic information of the measurements to
further reduce uncertainties in noisy data. We then gen-
erate our proposed cost function by integrating the peri-
odic information obtained in the first step with the
simulated data and measurements. We searched the sur-
face of the proposed cost function with a series of opti-
mizers in a hybrid manner. Hybrid methods use global
optimization followed by local 8 [24]. We used a fre-
quency-based method called optimization [12,23]. Glo-
bal and local optimization algorithms were used in
succession to further improve optimization results. A
block diagram of our approach for parameter estimation
of oscillatory systems is shown in Figure 1. The follow-
ing sections outline each of the blocks of this diagram.

2.1 Fundamental frequency estimation

The fundamental frequency is an essential metric for
assessing the underlying oscillatory characteristics in a
signal and is a critical step in developing our proposed
cost function and noise removal method. The funda-
mental frequency is the oscillation frequency of the con-
tinuous data. The measurements are samples of this
continuous-time signal. If one assumes a periodic wave-
form of x(£) such that:

x(t) = x(t + kT) Vke Z, (4)

the smallest value of T =z 0 for which (4) is valid is the
“fundamental period” of oscillation. The inverse of the
fundamental period is the fundamental frequency (fy).
Several approaches has been proposed to estimate f;
[24]. We used a frequency-based method called compo-
nent frequency ratio [24] to extract the fundamental fre-
quency of the measured data due to the fact that the
time-series methods may not be adequate for biochem-
ical measurements due to their low rate of sampling and
low temporal resolution. This method starts with trans-
forming the data to the Fourier domain by taking their
Fourier transform. The locations of the peaks in the
spectrum are then identified. The peaks in the frequency
spectrum are the harmonics of the fundamental fre-
quency. The final step is to find the greatest common
factor of these frequencies in which peaks occur.

Noi Fundamental Estimated
oisy o . . S ima
Measurements Frequency Removing Noise Optimization [— p oo

Estimation

Figure 1 The implemented process of parameter estimation for
oscillatory biochemical systems.
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2.1.1 Effect of noise on estimation of f,
This section investigates the effect of noise on estima-
tion of fo. We considered three model systems identified
from the literature: the two-state Tyson model [25], the
two-state Brusselator model [26] and the five-state
Golbeter model [27]. We considered the measurements
of the states of these models with the sampling rate
equal to 1 (sample/hour). Then, we added AWGN noise
with various SNRs to these signals and we estimate their
fundamental period using the method component fre-
quency ratio. Figure 2 shows the absolute error between
the estimated and the nominal fundamental period of
the three models for various amount of additive noise.
Figure 2 shows that the method used to estimate the
fundamental period is robust enough to the additive
noise.

2.2 Removing noise

One common approach to reduce noise in measure-
ments is wavelet hardthresholding [28], which employs a
thresholding function over the wavelet coefficients of
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Figure 2 The error in estimating of the fundamental period
versus the amount of noise in measurements for (a) Tyson
model [25], (b) Brusselator model [26], (c) Goldbeter model [27].
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the noisy data samples. The motivation of using wave-
lets is that it provides an appropriate basis to separate
noise from signal in the wavelet domain. The small
wavelet coefficients are more likely to be noise and large
coefficients are more likely to be components of the ori-
ginal signal. Thus, noise could be eliminated approxi-
mately from the signal by thresholding the wavelet
coefficients [29]. The steps of the noise removal proce-
dure using this method are shown in Figure 3:
2.2.1 Improving the hard-thresholding method in oscillatory
systems
Samples of oscillatory signals contain repetitive patterns
if they are taken over multiple periods. Thus, we
hypothesized that is possible to take advantage of data
oscillation to improve the denoising of the samples pro-
vided that their fundamental frequency is given or can
be estimated. We modified the denoising procedure of
oscillatory signals by adding two additional steps to the
traditional hardthresholding method as depicted in Fig-
ure 4. Two assumptions have been made about the
noisy oscillatory data. First, the fundamental period of
the data is not an integer multiple of the sampling rate.
Otherwise, it is not possible to increase the resolution of
the data by shifting them in this method. Second, we
assumed to have the measurements of more than one
period of the data. Otherwise, there will be no way to
estimate the fundamental period of the measurements.
The first step in Figure 4 is shifting all samples to the
first period of the data. This is based on the following
steps:

1. Partition the measurements X(nT,) based on their
calculated fundamental period to the sets of Xj
according to (5)

Xp(nTs) =X(nT,) kT <nTs < (k+ 1)T, 0<k< m, (5)

where T; is the sampling period and 7T is the funda-
mental period of the measurements X.

2. Shift each x; by the value of E7T. This will result
in a single period of the measurements with higher
resolution. The shifted versions of x;’s are calculated
based on (6)

N-1

J xe(ne — £T) (6)

k=0

Denoised
Samples

Wavelet

Noisy Wavelet
> Reconstruction

Samples Decomposition

Figure 3 The commonly used thresholding algorithm to
remove noise.
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Figure 4 The proposed noise removal steps.

Figure 5 illustrates the samples of a sine function of x
(¢) = sin 2mt with the rate of 2 (sample/sec) and its
shifted version. We see that Figure 5b shows only the
first period of the sine function but with higher
resolution.
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Figure 5 The samples of three periods of the function x(t) =
sin 2t with the rate of 2 (sample/sec) and their shifted
version based on the procedure outlined in (5) and (6).

Figure 6 shows the denoising process for the in-silico
measurements of the [M] component with sampling rate
= 1 (sample/hour) in the model of the circadian clock in
D. melanogaster proposed by Tyson [25]. The noise in
the measurements is additive white Gaussian noise
(AWGN) with SNR = 20 dB. Figure 6b shows the
shifted version of the noisy measurements of Figure 6a
using a calculated fundamental period of 24.21.

Wavelet decomposition, thresholding and reconstruc-
tion are then applied to this “shifted version” of the
noisy data. MATLAB was used to implement a three
level wavelet decomposition using the “Daubechies 6”
wavelet and the threshold value equaling 0.3. The wave-
let type, number of levels, and the threshold value were
chosen empirically and may vary from system to system.
The results are shown in Figure 6¢. The final step is to
reconstruct the original signal by shifting the samples
back to their respective periods (Figure 6d).

We compared the performance of the proposed
denoising method and the traditional wavelet hardthre-
sholding by taking the samples of the [Pf] component
with sampling rate = 1 (sample/hour) in the Tyson
model of circadian clock in D. Melanogaster [25]. Then,
we added AWGN noise with SNR = 20 to the dataset in
200 trials. We then removed noise using two
approaches: the traditional wavelet hardthresholding
method [29] and our proposed 12 method. Figure 7
compares three errors for each of the 200 trials. (1) The
RMSE between the noisy data and the original dataset
(the original error), (2) the RMSE between the denoised
data resulting from the traditional thresholding method
and the original dataset (Approach 1), and (3) the
RMSE between the denoised data resulting from the
proposed denoising method and the original dataset
(Approach 2). This figure shows that our proposed
method of denoising is more effective at removing noise
than the wavelet hardthresholding method, consistently
lowering the RMSE between the original signal and the
denoised signal.

2.2.2 The effect of error in estimating f, on proposed
denoising method

This section investigates the impact of the inaccuracies
of the fundamental period estimate on the proposed
denoising method. We considered the samples of the
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Figure 6 The proposed noise removal steps (a) the original noisy measurements, (b) shifted version of the noisy data based on
fundamental period, (c) the thresholding results over shifted version of the data, (d) moving back all samples to their original time.

components of the Tyson [25], Brusselator [26], and
Goldbeter model [27] with sampling rate = 1 (sample/
hour) and AWGN noise with SNR = 20. Then, we
denoised the data with using the traditional wavelet

thresholding (Approach 1) and the proposed denoising
method (Approach 2) assuming inaccurate estimated
fundamental period. Figure 8 compares the RMSEs of
the results of these two methods and the noisy data
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errors between the original data and the denoised data using the
proposed noise removing method.

for ranges of inaccurate estimated fundamental
periods.

Figure 8 shows that the results of the proposed
denoising method has lower RMSEs than the traditional
wavelet thresholding with small errors in the estimation
fundamental period. However, if the fundamental period
is estimated with errors approximately more than 0.25
for these models, the proposed method does not yield
lower RMSEs. However, Figure 2 shows that the error
in fundamental period estimation due to noise is much
smaller than the order of error that is considered in Fig-
ure 8.

2.3 Optimization

2.3.1 Forming cost function

One big disadvantage of comparing point by point sam-
ples to build the LS cost function of (3) for oscillatory
systems is the introduction of surface irregularities and
numerous local optima. Let us consider a simple exam-
ple of a sine function described in (7):

y(n) =1 +sin(27fn/1000 + ¢), (7)

where f = 1 is the frequency and ¢ = 0 is the initial
phase. Figure 9 illustrates the surface of the LS cost
function (3) for ranges of the signal parameters, fand ©.

Figure 9 shows significant rippling especially along the
f direction of the LS cost function. This happens due to
the varying degree of overlap between various periods of
two oscillatory signals in the LS objective function along
the f axis. This potentially results in numerous local
basins of attractions that hinder the optimizer’s ability
to find the global optimum. These ripples are funda-
mental characteristics of the LS cost function for sys-
tems with oscillatory dynamics. This phenomenon can
be observed for a large class of oscillatory systems espe-
cially along the parameter axes to which the fundamen-
tal frequency is more sensitive.

225 23 235 24 245 25 255 26
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2r ]
w
2 15t 1
z %
1
051 1
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3 "
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25} Approach 11|
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2r ]
w
215 g
4
1
051 1

0 . . . .
22 22.5 23 23.5 24 24.5 25 255
Fundamental P

(¢) M in Goldbeter Model

Figure 8 The comparison of the RMSEs of noisy signal, the
traditional hardthresholding method, and the proposed
denoising method for various estimations of the fundamental
period for three models of (a) Tyson with fundamental period
of 24.17, (b) Brusselator with the fundamental period of 23.06,
(c) Goldbeter with fundamental period of 23.65.

Thus, we hypothesize that we can leverage informa-
tion embedded in the data to produce a cost function
with better surface properties, resulting in fewer local
minima. This function is constructed in a piecewise
manner based on the oscillatory characteristics of the
simulated data at various parameter values. These char-
acteristics are divided into two cases: sustained
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Figure 9 The surface of LS cost function for the function shown in (7) versus the variation in parameters ¢ and f and its cross section
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oscillations in the simulated data and no sustained oscil-
lations in the simulated data. Sustained oscillation for a
specific value of the parameter k is characterized by the
fundamental period of the oscillations. A plot describing
this is shown in Figure 10. All the parameter values for
k in “area 1” produces sustained oscillations. This figure
shows that the fundamental period of the sustained
oscillation over this range may change. The values in
“area 2”7, on the other hand, lead to dynamics that are
not sustained oscillations.

If the simulated data are periodic, we introduced only
the samples of one period of the data into the cost func-
tion. Likewise, only the samples of one period of the
measurements will also be incorporated into this cost
function. If the fundamental period of the measured
data is not equal to the fundamental period of the simu-
lated data, the signal with the smallest period is padded
with zeros until the lengths of the signals are equal.
This results in monotonic changes in error with respect
to changes in fundamental period of the simulated data.

Period

A

area 1 area 2

I
I
area 2 |
I
1

» k

Figure 10 Changes of the fundamental period of the sustained
oscillation for ranges of values of a certain kinetic parameter
for a hypothetical oscillatory system.

If the simulated data are nonperiodic as in area two of
Figure 10, all time point measurements and the simu-
lated data will be included in the cost function, resulting
in the same cost function as the traditional LS objective
function. Equation (8) describes the new proposed cost
function for the ODE-based model of an oscillatory bio-
chemical pathway (1).

NX N21

e(P) = Y Y (2 — (), ®)

i=1 j=1

where z;; and Z; for periodic %; are calculated as:

_— Xij Oftj<Ti (9)
v 0T < tj < max(Ti,TA’i)' a

2. = ’Acij R 0=g< fi . (9b)
K 0T < ;< Inax(Ti, T,‘) '

Otherwise, z;; and Z; for non-periodic #; are calcu-

lated as:
Zjj = Xij (10a)
Zj = Xjj. (10b)

Here, x;; is the measurement at time #; of the ith state
of the system, X;; is the simulated data at time ¢ for the
ith state of the system. z;; and 2 are the truncated and
zero padded x;; and X;;, respectively, for the oscillatory
%;. For non oscillatory %;, z; and Z; are equal to x; and
Xjj, respectively. N is the length of the z; and ;. N, is

the number of states of the system, 7; is the fundamen-
tal period of the measurements (x;), which was
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computed using the component frequency ratio
approach and T; is the fundamental period of the simu-
lated data (%;), which is estimated for each candidate
parameter value. Ti was estimated using the YIN
approach [30], which is a modified version of the time-
domain autocorrelation method.

Figure 11 illustrates how the proposed cost function
compares two signals with different fundamental
periods.

Figure 12 shows the surface of the proposed cost
function of (8) for the sine function of (7). The global
minimum of the proposed cost function also occurs at f
=1 and ¢ = 0 similar to the LS cost function of (3)
shown in Figures 9. However, visual inspection of these
two figures shows that the surface of proposed cost
function is smoother than the surface of the LS cost
function for the example of (7). We hypothesize that

0 10 20 30 40 50 60 70 80 90 100

(a) 21

0 10 20 30 40 50 60 70 80 90 100
t
(b) 2
3 .
truncated X,
— — —truncated x, ||
S~ Zero Padded Regions
‘ >

30 40 50 60 70 80 90 100

(c) truncated z; and x4

Figure 11 lllustrating the two data sets with two different
periods and the way the new cost function compares them; (a)
the first data set with a period 24, (b) the second data set with
period 48, (c) their truncated version to be compared by the
cost function.
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this improvement of the cost function surface will
improve the performance of the optimization search
algorithm.

The effect of error in estimating f, on the performance
of the cost function The performance of the proposed
cost function (8) is not affected significantly by errors in
the estimation of the fundamental frequency of the mea-
surements. This is because of the fact that the measure-
ments used in (8) have a certain sampling rate. Basically,
if the error of the estimated fundamental period is small
with respect to this sampling rate, it will not affect the
number of samples that lies in one fundamental period
of the data. Also, adding or reducing one sample in the
summation of (8) obviously will not change the perfor-
mance of the proposed cost function dramatically.

2.3.2 The optimization method

The optimization of the proposed cost function was per-
formed using a hybrid approach. Hybrid methods, i.e.
the combinations of global and local search methods,
have been shown to yield results with smaller errors
than global searches individually [12,23]. The global
search algorithm that we adopt in this study is the
“Genetic Algorithm”, which is a widely-used approach
of a class of global search methods called evolutionary
strategies [31]. We used two consecutive local search
methods of MATLAB [32] in this research. The first
one was the derivative-based, constrained routine of
fmincon, and the second one was the derivative-free
routine of fminsearch that is based on the sim-
plex algorithm [33].

3 Results

This section shows the results of the optimization process
that was illustrated in Figures 1 using two cost functions:
the LS cost function of (3) and our proposed cost function
of (8). We used three model of Tyson [25], Brusselator
[26], and Goldbeter [27]. We compare 15 independent
runs of the optimization process for parameter estimation
for each oscillatory model. We add AWGN noise with
SNR = 20 to the data. We use our proposed noise removal
method to remove noise. The surface of the two cost func-
tions will be shown and compared for these three systems.
Results at all the intermediate steps of the optimization
will be presented for each of the 15 runs:

1. The global optimization (MATLAB ga routine).

2. The first local optimization (MATLAB fmincon
routine)

3. The second local optimization (MATLAB fmin-
search routine)

3.1 Comparison of two different cost function
The two cost functions of (3) and (8) are two different
functions of the kinetic parameters which do not
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Figure 12 The surface of the new cost function for the function shown in (7) versus changes in ¢ and f and its cross section for ¢ = 0.
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necessarily yield the same value for a given parameter
set. Thus, a true comparison of the estimated para-
meters obtained from the two objective functions will
require the LS score shown in (11) to equate the quality
of the respective estimates. Equation (11) is basically the
LS cost function summed only over the samples taken
from the first fundamental period of the measurements.
Introducing the measurements of only one period in
computing the score creates a fair metric that shows the
quality of estimated parameter sets.

Nx NT,‘

score(k) = Z Z (&ij(k) — xij)z.

i=1 j=1

(11)

Here, N, x;, and X;; are defined as (3) and N, is the
number of samples that are extracted in (0 < £ < T))
assuming T is the fundamental period of the x;.

3.2 Parameter estimation results for two-state Tyson
model

The two-state Tyson model (BIOMD0000000036 in Bio-
Models database [34]) is a mathematical model of the
circadian clock in wild-type fruit flies, D. melanogaster.
This organism has circadian clocks similar to mice and
bread molds. This model, shown in (12), consists of two
states and nine kinetic parameters. The nominal values
of the parameters of this system are shown in Table 1.

M m
M- _ v L — kM (12a)
dt 1+ (P(1—q)/2Pui)
Pt kp1 Poq + ko P,

2

1= /14 8KyP,

(12¢)

Figure 13 shows the surfaces of the LS cost function
and the proposed cost function of (8) for pairwise com-
binations of parameters k,, and J, and k,3 and P, over
specific ranges. Characteristics of these parameters are
representative of the characteristics of all kinetic para-
meters of the Tyson model (results are not shown). The
values of the remaining parameters are held constant at
their nominal values in all figures.

We see through visual inspection that our proposed
cost function produces a smoother surface than that of
the LS cost function for different values of the para-
meters K, Ky3, Peris and J,. Figure 14 shows the cross-
sections of the cost functions above (dashed lines)
together with the fundamental period of the data (solid
line) for ranges of values in the same order of magni-
tude as the nominal value.

Figure 14a shows that the system produces sustained
oscillations only for k,, in the range [0.03 0.44]. The
fundamental period of the sustained oscillations falls
from 58 to 6.6 along this range. This radical change in
the fundamental period produces irregularities in the LS
cost function over this interval. However, the proposed
cost function maintains good surface properties in spite
of this extreme change in the fundamental period of the
system. This emphasizes that our proposed cost func-
tion addresses the issue of surface irregularities of the
LS cost function caused by introducing multiple periods
of the data in calculating the error. Figure 14b shows
similar results.

Figure 14c, d shows that the fundamental period for
different values of P.,; is between 15.4 and 25.4 which
is less than the changes in fundamental period that
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Table 1 The results of optimization with minimum score for Tyson model.

Parameter Nominal value Estimation of the proposed cost function Estimation of the LS cost function
Vim 1 1.1372 0.9472
K 0.1 0.1049 0.1097
Vp 05 04668 04740
K1 10 15.88 21.48
kpo 0.03 0.0936 0.0927
kp3 0.1 0.0766 0.0615
Keg 200 692.64 922.16
Pt 0.1 0.1076 0.1477
Jp 0.05 0.0511 0.0738

Score 0.1378 0.1084 0.2441

The values of kinetic parameters with minimum score derived from optimization using the proposed cost function and the LS cost function for the Tyson model.
The bold values are the ones that are estimated incorrectly (error more than 10%). The score values are calculated based on (11)

shown in Figure 14a, b. The LS cost function still shows
varying levels of surface irregularities particularly along
the P.,; axis. The proposed cost function again shows
smoother surface characteristics under these conditions
as well.

3.2.1 Results of parameter estimation

We assumed the measurements to be 100 samples of
both [M] and [P,] components with the rate of one

sample per hour and the AWGN noise of SNR = 20.
We removed the noise using the proposed approach
before the optimization step. The RMSE between the
noisy samples and their real values of the samples were
0.0989. This was suppressed to 0.0413 after denoising.
The population size was set to 200 and number of gen-
erations equals 50 for the ga routine. We calculated Nr,
from (11) to be 24 for the Tyson model. The computed
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scores for the estimated parameters from the 15 runs of
optimization are shown in Figure 15 at the three steps
of the hybrid optimization process. The mean, median
and the minima of the computed scores at each level for
the two cost functions are also shown in Table 2. Figure
15 and Table 2 show visually and numerically that the
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H
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Figure 15 The comparison of the computed scores resulted
from the cost functions in 3 steps of optimization: Step 1:
results of ga routine. Step 2: results of fmincon routine. Step 3:
results of fminsearch routine.

optimization routine performs better using the proposed
cost function than the LS cost function at all steps.
These results are also consistent with our visual inspec-
tions of the cost functions in Figures 13 and 14.

The optimized results with the lowest score out of 15
runs for the LS cost function and the proposed cost
function are shown in Table 1.

The estimate results in the lowest score using noise-
free measurements produces six of nine kinetic para-
meters with less than 10% errors (results not shown).
Table 1 shows that the noisy case results in four of nine
estimated parameters with more than 10% error. In both
cases, proposed cost function yields more accurate

Table 2 Statistics of optimization results for Tyson
model.

Step 1 Step 2 Step 3
Proposed LS Proposed LS Proposed LS
Mean 24497 3.5838 1.4465 1.7760 03131 11116
Median 1.9998 3.5731 14117 1.3595 0.2354 0.7788
Min 05706 07788 01118 02589 01084  0.2441

Mean, median, and minimum of the score values shown in Figure 15
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results in comparison to the LS cost function. The large
number of inaccuracies for the noisy case is more a
result of system sloppiness versus inaccuracies of the
estimation procedure [35,36], which results in 21 a wide
range of parameters with similar system dynamics. It is
evident that our proposed cost function was able to pro-
duce better overall system dynamics than the traditional
LS cost function, which is clearly conveyed by the lower
overall error. Our proposed method, similar to the LS
cost function, only takes into account the accuracy of
dynamics. Thus, the sloppiness can results in moderate
level of parameter accuracy. Recently, Apgar et al. pro-
posed an experiment design framework to improve esti-
mates of sloppy parameters in biochemical models [37].
This, however, is beyond the scope of this article.

3.3 Parameter estimation for two-state Brusselator model
The Brusselator model was proposed by Prigogine for
theoretical analysis of autocatalytic reactions [26]. This
model consists of two states and four kinetic parameters
as shown in (13). The nominal values of the parameters
of this system are shown in Table 3.

‘gf = k1A + ko X?Y — k3BX — kX, (13a)
‘Z = —kyX?Y + k3BX, (13b)
A=05 B=3. (13¢)

Figure 16 shows the values of the two cost functions
together with the fundamental period of the data (the
green trajectories) for different values of four parameters
of the system.

Figure 16a shows the fundamental period of sustained
oscillation falls from 45.9 to 4.3 for k; in the range [0.7
2.8]. This change in the fundamental period again pro-
duce irregularities in the LS cost function over this
interval. The proposed cost function, on the other hand,
maintains good surface properties in spite of this change
in the fundamental period of the 22 system. This further
verifies that the proposed cost function is able to
address the irregularities of the LS cost function
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resulting from sustained dynamics embedded in the
dynamics used to evaluate the cost function.

3.3.1 Results of parameter estimation

This section shows the results of 15 runs of optimiza-
tion for the Brusselator model using 100 samples of
only [Y] component with sampling rate = 1 (sample/
hour) and AWGN noise with SNR = 20. We removed
the noise using the proposed denoising approach. The
RMSE between the noisy samples and their real values
was 0.0971, which was suppressed to 0.0570 after
denoising. The population size was set to 100 and the
number of generations equals 50. The computed scores
for the estimated parameters from the 15 runs of opti-
mization are shown in Figure 17 and Table 4. We calcu-
late N7, = 23 for calculating the score of (11) for the
Brusselator model. The results again demonstrate
visually and numerically that the optimization routine
performs better using the proposed cost function than
the LS cost function in all steps even in presence of
noise. These results are also consistent with our visual
inspections of the cost functions in Figure 16.

The derived results with the lowest score out of 15
runs for the LS cost function and the proposed cost
function are in Table 3.

Table 3 shows that the resulting overall error for the
proposed cost function is lower than that of the LS cost
function. All four parameters were estimated incorrectly
using the LS cost function, while they were estimated
almost accurately using the proposed cost function.

3.4 Parameter estimation results for five-state Goldbeter
model

The D. melanogaster circadian model of Goldbeter [27]
was investigated in the third study. This model is also
available in BioModels database [34]
(BIOMDO0000000016). Here, the circadian oscillations of
PER is modeled with five states: PER mRNA [M], PER
protein [PO], the mono-phosphorylated form [P1], the
bi-phosphorylated form [P2] and nuclear PER [PN].
This five-state model has 18 kinetic parameters. The
ODE model of the system is shown in 14. The nominal
values of the 18 kinetic parameters of this system are
available in Table 5.

Table 3 The results of optimization with minimum score for Brusselator model.

Parameter Nominal value Estimation of the proposed cost function Estimation of the LS cost function
ky 1 0.9912 1.4064
Ky 1 09112 0.8492
ks 1 0.9526 0.8944
Ky 1 09335 1.6732
Score 03128 0.2763 0.7619

The values of kinetic parameters with minimum score derived from optimization using the proposed cost function and the LS cost function for the Brusselator
model. The bold values are the ones that are estimated incorrectly (error more than 10%)
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Figure 17 The comparison of the computed scores resulted
from the cost functions in 3 steps of optimization: Step 1:
results of ga routine. Step 2: results of fmincon routine. Step 3:
results of fminsearch routine.

dr, Py Py Py P

dt =V1K1+P0_V2K2+P1_V3K3+P1_V4K4+P2(14C)
dar, 4! Py P,

e V3K3 pr V4K4 +Py faP2+ kaPy = Vde +Pz(14d)
dPN

d =kiPy — kaPyN (14e)

Figure 18 shows the values of the two cost function
together with the fundamental period of the data (the
green trajectories) along different values of four para-
meters of the system.

Table 4 Statistics of optimization results for Brusselator
model.

Step 1 Step 2 Step 3
Proposed LS Proposed LS Proposed LS
Mean 0.8857 148167 0.8688 94746 08177 15517
Median 0.7336 1.0179 0.7116 1.0179 0.7107 1.0179
Min 0.5207 07323 04879 07323 02763 07619

Mean, median, and minimum of the score values shown in Figure 17
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Table 5 The Result of Optimization with Minimum Score for Goldbeter Model.

Parameter Nominal value Estimation of the proposed cost function Estimation of the LS cost function
Vs 0.76 0.6980 0.6275
K 1 0.9996 0.9400
n 4 4.9920 5.7232
Vi 0.65 05972 0.5559
Ko 0.5 0.5056 0.7412
ks 0.38 03677 03732
vy 32 3.8093 3.1552
K 2 2.6488 1.8288
Vo 1.58 3.1221 1.2836
K5 2 4.4760 1.1952
V3 5 8.8000 45100
K3 2 4.6696 2.0120
V4 25 5.6410 2.8120
Ky 2 7.0128 3.0704
Vy 0.95 09713 09614
Ky 02 0.2413 0.2250
ki 19 1.7541 2.1944

The values of kinetic parameters with minimum score derived from optimization using the proposed cost function and the LS cost function for the five-state
Goldbeter model. The bold values are the ones that are estimated incorrectly (error more than 10%)

It could be seen in all figures that the changes in per-
iod of the oscillation does not produce significant irre-
gularities in the LS cost function surface, which is
different than previous examples. Figure 18b, for
instance, shows the changes of period for k, in the
interval [0.4 2]. However, there are not multiple basins
of attractions along the k, direction in spite of these
changes in fundamental period. This is due to the fact
that the LS cost function changes over orders of magni-
tudes along this parameter direction in a way that the
produced ripples has little effect on the monotonicity of
the LS cost function. This extreme change in the LS
cost function (approximately from 400 to 2200 for k,
over the interval [0.4 2]) happens because the peak to
peak magnitude of the sustained oscillations of the
simulated data also increases in order of magnitudes
along this parameter direction. For example, the peak of
the [P,] increases from 0.25 to 1.5 for k, over the inter-
val [0.4 2].

The proposed cost function still shows good surface
characteristics although it was not much different than
the already favorable characteristics of the LS cost func-
tion. Thus, it is expected that both of these cost func-
tions would perform almost similar in the optimization
process.

3.4.1 Parameter estimation results

This section shows the results of 15 optimization runs
using 100 samples of [M], [Py], [P1], [P,], and [Py] com-
ponents with the sampling rate = 1 (sample/hour) and
AWGN noise with SNR = 20. We suppressed the noise
using the proposed denoising approach. The RMSE

between the noisy samples and their real values were
0.1012, which was suppressed to 0.04906 after denoising.
We calculated Nr, =23 for the score in (11). The
results of 15 optimization runs are shown in Figure 19
and Table 6. This shows that the performances of the
LS cost function and the proposed cost function are
almost the same in all steps. These results are also con-
sistent with our visual inspections of the cost functions
in Figure 18.

The derived results with the minimum score out of 15
runs for the LS cost function and the proposed cost
function are shown in Table 5.

Table 5 shows that 8 out of 18 parameters were esti-
mated within 10% of their nominal value for the pro-
posed cost function as opposed to 7 out of 18 for the
LS cost function. This shows a wide range of parameters
have similar dynamics. This is due to system sloppiness
that was also mentioned for the Tyson model. Our pro-
posed cost function takes into account the accuracy of
dynamics, which is similar to the LS cost function.
Therefore, this may results in moderate accuracy in
parameter values because of the sloppiness.

4 Conclusions

This article addresses the issue of kinetic parameter esti-
mation in oscillatory biochemical systems. We showed
that the LS cost function for oscillatory systems results
in surface characteristics that potentially hinder the per-
formance of optimization routines used to estimate
kinetic parameters. Thus, we suggested a new cost func-
tion with more favorable surface properties which leads
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to improved results for parameter estimation. This cost
function integrates temporal information with periodic
information embedded in measurements used to esti-
mate these parameters. This generalized cost function
also needs less first principles knowledge to generate the
cost function in comparison to the previous developed
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Figure 19 The comparison of the computed scores resulted
from the cost functions in 3 steps of optimization: Step 1:
results of ga routine. Step 2: results of fmincon routine. Step 3:
Results of fminsearch routine.

methods for oscillatory systems. We tested our cost
function using three benchmark oscillatory biochemical
pathways and compared our proposed objective function
with the traditional LS cost function in several optimiza-
tion runs using noisy measurements. The comparison of
the results verified that the optimization performed
more effectively using our 26 proposed cost function as
compared to the traditional LS cost function. Further-
more, we introduced a wavelet hardthresholding
approach for noise removal. This modified approach is
able to suppress noise in oscillatory data better than the
traditional wavelet thresholding approach. This, together
with the proposed objective function will result in more

Table 6 Statistics of optimization results for Goldbeter
model.

Step 1 Step 2 Step 3
Proposed LS Proposed LS Proposed LS
Mean 147428 188913 05812 04939 0.1914 0.1585
Median 12.3454  22.7683 0.2456 0.2553 01778 0.1446
Min 1.5970 3.5281 0.1282 0.1183 0.1255 0.1183

Mean, median and minimum of the score values shown in Figure 19
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accurate kinetic parameters that will eventually lead to
biochemical models that are more precise, predictable
and controllable. There are, however, unsolved issues
with sloppiness of biochemical pathways [35,36], which
require further investigation especially for oscillatory
biochemical pathways.
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