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Reconstruction of gene regulatory networks based on experimental data usually relies on statistical evidence, necessitating the
choice of a statistical threshold which defines a significant biological effect. Approaches to this problem found in the literature
range from rigorous multiple testing procedures to ad hoc P-value cut-off points. However, when the data implies graphical
structure, it should be possible to exploit this feature in the threshold selection process. In this article we propose a procedure
based on this principle. Using coding theory we devise a measure of graphical structure, for example, highly connected nodes or
chain structure. The measure for a particular graph can be compared to that of a random graph and structure inferred on that
basis. By varying the statistical threshold the maximum deviation from random structure can be estimated, and the threshold is
then chosen on that basis. A global test for graph structure follows naturally.
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1. Introduction

The reconstruction of gene regulatory networks using gene
expression data has become an important computational
tool in systems biology. A relationship among a set of genes
can be established either by measuring the effect of the
experimental perturbation of one or more selected genes
on the remaining genes or from the use of measures of
coexpression from observational data. The data is then
incorporated into a suitable mathematical model of gene
regulation. Such models vary in level of detail, but most are
based on a gene graph, in which nodes represent individual
genes, while edges between nodes indicate a regulatory
relationship.

One important issue that arises is the variability of the
data due to biological and technological sources. This leads
to imperfect resolution of gene relationships and the need
for principled statistical methodology with which to assign
statistical significance to any inferred feature.

In many models, the existence or absence of an edge in
the gene graph is resolved by a statistical hypothesis test. A
natural first step is the ranking of potential edges based on

the strength of the statistical evidence for the existence of
the implied regulatory relationship. The intuitive approach is
to construct a graph consisting of the highest ranking edges,
defined by a P-value threshold. The choice of threshold may
be ad hoc, typically a conservative significance level such as
0.01. A more rigorous approach is to select the threshold
using principles of multiple hypothesis testing (see, e.g.,
[1]), which may yield an estimate of the error rates of edge
classification.

There is a fundamental drawback to this approach,
in that the lack of statistical evidence of a regulatory
relationship may be as much a consequence of small sample
size as of biological fact. Under this scenario, we note that
selection of a P-value threshold Pthr = p generates a graph
of, say, Np edges, with Np increasing in p. Under a null
hypothesis of no regulatory structure, P-values are randomly
ranked, hence edges will be distributed uniformly, whereas
the edges of a true regulatory network will posses structure
unlikely to arise by chance. Formulated in terms of statistical
hypothesis tests, it should be possible to exploit this evidence
in order to make a more informative choice of Pthr. This
article proposes a method to accomplish this goal.
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2. Problem Formulation

The proposed algorithm is intended to be part of the
following type of analysis based on gene expression data for
N genes.

(S1) Collect gene perturbation data from N experiments
coupled with control data. For simplicity, assume that
experiment j is a single perturbation of gene j.

(S2) Construct an N×N matrix D, in which element Dij is
a measure of the statistical evidence that perturbation
of gene j changes the expression level of gene i. This
defines data matrix D.

(S3) Use the methodology proposed here to determine a
P-value threshold Pthr.

(S4) Conclude that perturbing gene j causes a change in
gene i if and only if Dij ≤ Pthr.

(S5) The perturbation responses implied by step (S4) may
now be used to fit, for example, a Boolean network as
in [2–4].

We assume in (S1)-(S2) that the matrix D is balanced
in the sense that row i and column i refer to the same
gene. The methods proposed here do not rely on this
assumption, although a formal treatment of the general
case will be deferred to future work. Typically, Dij will be
a P-value from a two-sample hypothesis test comparing
the expression levels of genes i obtained from cells sub-
ject to an experimental perturbation of gene j to those
obtained from control (unperturbed) cells. In this case
small values of Dij are interpreted as evidence for the
existence of directed edge j → i. We adopt this convention
below.

It will be useful to introduce some definitions of directed
gene graphs (see [5]). We say gene a regulates gene b if the
gene expression level of a directly influences that of gene b.
This is distinct from transitive regulation, in which expression
levels of one gene affect another only through intermediary
genes. For example, if a regulates b and b regulates c, then a
and c are in a transitive regulatory relationship (that would
not exist without b). In an accessibility graph edge a → b
exists if a regulates or transitively regulates b. In contrast,
in an adjacency graph an edge from a to b exists only if
a regulates b. An adjacency graph can be constructed as a
parsimonious representation of an accessibility graph ([5–
7]). It should be noted that a regulatory relationship implied
by a graphical model is relative only to those genes included
and does not rule out the existence of intermediary genes not
observed.

Step (S3) will be based on the following idea. Data matrix
D can generate an estimated accessibility graph Gacc(D, t) by
constructing an edge j → i if and only if Dij ≤ t. While
this is a crude form of network model, we may still expect
Gacc(D, t) to contain interesting and measurable structure,
provided that t is efficiently chosen. Our intention is to use
this structure to guide the choice of Pthr. The set of edges in
Gacc(D,Pthr) is then used to construct a more detailed model,
as in step (S5).

Consider a hierarchical sequence of graphs G1,G2, . . .
obtained by successively adding edges in increasing order
of their P-values. If the data is dominated by statistical
noise, we may expect elements of the sequence to consist of
random graphs generated by uniform distributions of a fixed
number of edges, known as the Erdös-Renyi random graph
model (see, e.g., [8]). Actual cellular networks are believed
to conform more closely to the power-law model, where the
likelihood that a randomly chosen node has d interactions is
proportional to d−τ where 1.5 < τ < 2.5 (see [9]). We may
also expect more chain structure (longer paths) than would
occur by chance. This would allow statistical identification
of cellular network structure, which can provide auxiliary
information for the selection of Pthr beyond what is nor-
mally available using standard multiple hypothesis testing
methods.

2.1. Conditional Hypothesis Tests. The required elements
of our procedure are (i) a data matrix D (steps (S1)-
(S2)), (ii) a graph score λ which is sensitive to general
graphical structure, and (iii) a distributional model P for
generating graphs under the null hypothesis of no regulatory
relationships. In the following development smaller values of
λ imply greater structure.

2.1.1. Notational Conventions. We will adopt the following
notation. Assume that N is fixed. First, let S1 be the set of
all increasing sequences of positive integers s̃ = (s1, . . . , sm)
for which sm = N2. Then let V be the set of all N-
dimensional vectors of nonnegative integers (which we refer
to as count vectors). Let v denote the sum of the elements
of any v ∈ V. A sequence of vectors ṽ = (v1, . . . , vm) from
V, written vi = (vi1, . . . , viN ), is increasing if vi j ≤ v(i+1) j

for all 1 ≤ i ≤ m − 1, 1 ≤ j ≤ N , and if (v1, . . . , vm) ∈
S1. Let S2 be the set of all such increasing count vector
sequences.

The set of all order N labelled graphs is denoted by G.
Let Gk ⊂ G be the subset of graphs with k edges, and for any
v ∈ V let Gv ⊂ G be the subset of graphs containing vj edges
with parent j. Let G−Ek ⊂ Gk, G−Ev ⊂ Gv be the respective
subsets which exclude all edges from edge set E. A sequence of
graphs g1, . . . , gm fromG is called increasing if gj is a subgraph
of gj+1, 1 ≤ j ≤ m − 1. We say that an increasing graph
sequence (g1, . . . , gm) conforms to index sequence s̃ ∈ S1 and
set E if gi ∈ G−Esi , for all 1 ≤ i ≤ m.

2.1.2. Data Matrix. Suppose that we are given an N × N
data matrix D of P-values as described in (S1)–(S5). An
edge j → i may be ruled out by setting Dij = 1. We will
refer to such an edge as a void edge, with corresponding
void matrix element. For example, this should occur when
the data cannot predict self-regulation implied by edges
i → i. A missing value in D may also represent a void
edge.

Let t1, t2, . . . , tm be the sequence of all unique values
represented as elements of D. The value of m varies according
to the number of ties as well as the number of void elements.
We need to define a system of counts generated by D.
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Set

vi j =
N
∑

k=1

I
{

Dkj ≤ ti
}

, i = 1, . . . ,m, j = 1, . . . ,N ,

sk =
N
∑

i=1

N
∑

j=1

I
{

Dij ≤ tk
}

, k = 1, . . . ,m,

(1)

where I{E} = 1 when event E occurs and is zero otherwise.
We then define the sequence G(D) = (G1(D), . . . ,Gm(D)),
where Gk(D) = Gacc(D, tk) ∈ G−Esk . This sequence is
increasing, and consecutive graphs may increase by more
than one edge. We refer to the system of counts S1(D) =
(s1, . . . , sm) and S2(D) = (v1, . . . , vm), vi = (vi1, . . . , viN )
which can be interpreted as random objects in sample spaces
S1, S2, respectively. The sequence S1(D) corresponds to the
number of edges of the graphs in G(D); that is, sk is the
number of edges in Gk(D). Similarly, S2(D) corresponds to
the number of edges decomposed by parent node in G(D);
that is, vi j is the number of edges in Gi(D) with parent node
j.

2.1.3. Conditional Inference. Under the simplest null hypoth-
esis of no regulatory structure perturbation conditions are
indistinguishable from the control, in which case the P-
values of D are uniformly distributed. A number of consid-
erations then need to be made. The uniform distribution
assumption depends on a correct characterization of the
sampling distribution, which is often problematic in gene
expression assays. In addition, when empirical methods
(permutation or bootstrap methods) are used to estimate P-
values, ties may result which affect graph ordering. Finally,
the definition of a null model relies on the independence
structure of the data, which must be carefully characterized.
Conditional procedures permit the development of tests
which do not depend on problematic model identification,
and have been extensively used in other applications in
statistical genetics.

We will now develop two null models. A conditional
inference procedure is defined by data D, a composite null
hypothesisH0 concerningD, a test statisticT(D), an ancillary
statistic S(D), such that the distribution of T(D) conditional
on S(D) can be characterized, and is the same for all
distributions described by H0.

2.1.4. Null Model 1 (Elementwise Exchangeability). Recall
that a multivariate distribution is exchangeable if it is
invariant under any permutation of its coordinates. This
includes iid distributions, but also those with identical
marginal distributions and permutation invariant depen-
dence structure.

For any g ∈ G let G−Es [g] be all graphs in G−Es for which g
is a sub graph.

Definition 1. For void edges E and sequence s̃ =
(s1, . . . , sm) ∈ S1, a random sequence of graphs ˜h =
(h1, . . . ,hm) possesses a null distribution P1(E, s̃) if h1 is
uniformly distributed on G−Es1

and if hj , conditional on

(h1, . . . ,hj−1), is uniformly distributed on G−Esj [hj−1], for all
j = 2, . . . ,m.

The sequence ˜h forms a Markov process in which hj+1 is
obtained from hj by adding s j+1 − s j edges to hj at random,
excluding E. We then define the null hypothesis:

(H1
0 ) The distribution of the nonvoid elements of D is

exchangeable.

This leads to the following lemma.

Lemma 1. Under hypothesis H1
0 the distribution of G(D)

conditional on S1(D) is given by P1(E, S1(D)).

Proof. Suppose P(S1(D) = s̃) > 0 for some s̃ = (s1, . . . , sm) ∈
S1. For k > 1 suppose g0 ∈ G−Esk−1

and g ∈ G−Esk [g0]. We have
the set equality

{

Gk(D) = g
}∩ {S1(D) = s̃

}

=
{

Dij <Di′ j′ ∀ j −→ i∈g, j′ −→ i′ /∈g
}

∩{S1(D)= s̃
}

.

(2)

Let g′ ∈ G−Esk [g0], and suppose g /= g′. We may define
a permutation operator T on the nonvoid elements of D
such that the elements associated with g are mapped onto
the elements associated with g′, with element associated
with g0 mapped into themselves. This implies that the
elements not associated with g are mapped into the elements
not associated with g′. The quantity S1(D) is permutation
invariant, and by construction Gk−1(D) = g0 = Gk−1(TD)=
g0 so from (2) we have

{

Gk(D)=g
}∩{Gk−1(D) = g0

}∩ {S1(D)= s̃
}

={Gk(TD)=g′
}∩ {Gk−1(TD)=g0

}∩ {S1(TD)= s̃
}

.
(3)

By the exchangeability assumption D and TD have identical
distributions, giving

P
({

Gk−1(D) = g0
}∩ S1(D) = s̃

)

= P
({

Gk−1(TD)=g0
}∩ S1(TD) = s̃

)

,

P
({

Gk(D) = g′
}∩ {Gk−1(D) = g0

}∩ {S1(D) = s̃
})

= P
({

Gk(TD) = g′
}∩{Gk−1(TD)=g0

}∩{S1(TD) = s̃
})

.
(4)

The argument can be adapted to verify that G1(D), condi-
tional on {S1(D) = s̃} is uniformly disributed on G−Esk . By
combining the above equalities the proof follows.

In the simplest case, the null hypothesis predicts
uniformly distributed and independent P-values among
nonvoid elements of D. In this case by Lemma 1 G(D)
conditioned on S1(D) has distribution P1(E, S1(D)). If the
marginal distributions are continuous, then the probability
of ties is zero, and with probability 1 the elements of S1(D)
increment by one until the void elements are reached. When
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distributions are discrete ties, are possible and S1(D) can
be determined directly from the data. It is important to
note that the actual marginal distribution of the elements is
not important, which is a considerable advantage when null
distributions are difficult to estimate accurately.

The testing procedure proposed here is based on simu-
lated sampling from P1(E, S1(D)). There are two straight-
forward ways to do this. First, let D∗ be a random matrix
obtained by a random permutation of the nonvoid elements
of D. We have already argued that S1(D) = S1(D∗). We
also note that the distribution of nonvoid elements of D∗

is exchangeable, hence by Lemma 1 G(D∗) has distribution
P1(E, S1(D)). Alternatively, suppose D∗ is any random
matrix with continuously distributed iid nonvoid elements.
Given any index sequence s̃ ∈ S1, we can define a sequence
of graphs G∗ = (Gs1 (D∗), . . . ,Gsm(D∗)). It is easily verified
that G∗ has distribution P1(E, s̃).

2.1.5. Null Model 2 (Within Column Exchangeability). The
use of P1(E, S1(D)) as a null distribution rests on the
assumption of elementwise exchangeability. A number of
commonly encountered conditions may require alternative
assumptions. For example, the columns of D may be
derived from data obtained from a single high throughput
assay. In this case, the columns may be independent,
but not identically distributed. Furthermore, normalization
procedures and other slide specific factors may affect any
independence assumptions within a column. We therefore
develop an alternative null model based on within column
exchangeability, which is accomplished by conditioning on
S2(D).

Definition 2. Suppose that we are given void edges E and an
increasing count vector sequence ṽ = (v1, . . . , vm) ∈ S2, vi =
(vi1, . . . , viN ). A random sequence of graphs ˜h = (h1, . . . ,hm)
possesses a null distribution P2(E, ṽ) if h1 is uniformly
distributed on G−Ev1

, and if hj conditional on (h1, . . . ,hj−1) is
uniformly distributed on G−Evj [hj−1] for all j = 2, . . . ,m.

Then define our second null hypothesis:

(H2
0 ) The columns of D have an exchangeable distribution

among nonvoid elements, and are mutually indepen-
dent.

This leads to the following lemma.

Lemma 2. Under hypothesis H2
0 the distribution of G(D)

conditional on S2(D) is given by P2(E, S2(D)).

Proof. The argument in Lemma 1 may be directly adapted by
using only permutations T which map any element into its
original column.

Following the permutation procedure used to simulate
P1(E, S1(D)), we can simulate P2(E, S2(D)) using indepen-
dent within column permutations of D, resulting in D∗.
By Lemma 2, G(D∗) possesses distribution P2(E, S2(D)). We
note that by construction a graph sequence sampled from
P2(E, S2(D)) also conforms to (E, S1(D)).

2.2. Hypothesis Test Algorithm. Suppose that we have a
sample of graphs H = (h1, . . . ,hR) ∈ GR from a distribution
P , which in turn defines a random variable λ(h) with
distribution Pλ, where h is distributed as P . If P is a
null distribution representing graphs with no significant
structure, then the location of λ(g) in the lower tail of Pλ

is evidence of significant structure within g.
We will assume that when null hypothesis H1

0 or H2
0

does not hold, this violation is due to the existence of a true
graph g′. In this case, all elements of D conform to the null
hypothesis except for any Dij for which j → i ∈ g′, which
are assumed to have smaller means than would be implied
under the null distribution.

We therefore define statistics:

q
(

g | H) = (R + 1)−1

⎛

⎝1 +
R
∑

j=1

I
{

λ
(

hj

)

≤ λ
(

g
)

}

⎞

⎠,

z
(

g | H) = σ(H)−1(λ
(

g
)− μ(H)

)

,

(5)

where μ(H) and σ(H) are the sample mean and standard
deviation of sample (λ(h1), . . . , λ(hR)). Then q(g | H) is the
estimated P-value for a test against a null hypothesis that g is
sampled from P , and z(g | H) is the associated z-score.

Now suppose that we are given G(D), with S1(D) =
(s1, . . . , sm), S2(D) = (v1, . . . , vm). We may generate a random
sample from either P1(E, S1(D)) or P2(E, S2(D)), say ˜G∗ =
(G∗1 , . . . ,G∗R ). Set G∗i = (gi1, . . . , gim), from which we extract
sample Hj = (g1 j , . . . , gRj) so that when ˜G∗ is a random
sample from P1(E, S1(D)) or P2(E, S2(D)), Hj is a uniformly
distributed random sample from G−Esj or G−Evj , respectively.
This leads to the two sequences of statistics:

Q
(

G(D) | ˜G∗
)

= (q(G1(D) | H1), . . . , q(Gm(D) | Hm)
)

,

Z
(

G(D) | ˜G∗
)

= (z(G1(D) | H1), . . . , z(Gm(D) | Hm)).

(6)

These sequences then form measures of the deviation of
G(D) which can be used to accomplish two tasks. First,
we conjecture that the minimum point of these sequences
will define a useful threshold Pthr, that is, a point in the
sequence G(D) below which most edges are true positives (a
selected edge in true graph g′), and above which additional
edges are primarily false positives (a selected edge not in
true graph g′). Second, by generating further replications,
we can estimate a global significance level for the presence
of network structure. As will be discussed below, examining
the entire range of the sequence G(D) may be problematic,
and so it may be truncated. Let mK = max{i : si ≤ K}, where
S1(D) = (s1, . . . , sm). Then consider the truncated sequences:

QK
(

G(D) | ˜G∗
)

= (q(G1(D) | H1), . . . , q
(

GmK (D) | HmK

))

,

ZK
(

G(D) | ˜G∗
)

= (z(G1(D) | H1), . . . , z
(

GmK (D) | HmK

))

.

(7)

Thus, all graphs of order K or less are considered. We
first devise a statistic W(G(D) | ˜G∗) which measures
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statistical differences of G(D) from the sample ˜G∗. We then
generate an additional set of R∗ null replications from the
null distribution, denoted by ˜G∗∗ = (G∗∗1 , . . . ,G∗∗R∗ ). An
empirical distribution is formed from the sample W(G∗∗1 |
˜G∗), . . . ,W(G∗∗R∗ | ˜G∗), from which a significance level for
statistic W(G(D) | ˜G∗) is directly obtainable. This represents
the desired global significance level. We consider the four
choices:

̂WK
Q = min

{

QK
(

G(D) | ˜G∗
)}

,

W
K
Q = mean

{

log10

(

QK
(

G(D) | ˜G∗
))}

,

̂WK
Z = min

{

ZK
(

G(D) | ˜G∗
)}

,

W
K
Z = mean

{

ZK
(

G(D) | ˜G∗
)}

.

(8)

We now summarize the proposed algorithm.

Algorithm A. (1) Construct hierarchical graph sequence
G(D) for data matrix D.

(2) Generate reference sample ˜G∗ from R replications of
null model P1(E, S1(D)) or P2(E, S1(D)).

(3) Identify threshold Pthr as the minimum point of the
sequence QK (G(D) | ˜G∗) (or alternatively of ZK (G(D) |
˜G∗)).

(4) Generate a new reference sample ˜G∗∗ from R∗

replications of the null model.
(5) Calculate statistic W(G(D) | ˜G∗), and determine

its quantile position among replications W(G∗∗1 | ˜G∗), . . . ,
W(G∗∗R∗ | ˜G∗). This gives the global significance level for the
presence of graphical structure in the network.

The Algorithm A depends on a score λ which is sensitive
to general forms of regularity. This is discussed in the next
section.

3. Information-Based Scoring for
Directed Graphs

Information theoretic methods are becoming increasingly
important in bioinformatics (see, e.g., [10]) and have been
recently used in various graphical modelling applications.
Recent examples include [2–4, 11, 12]. This is generally done
using the minimum description length (MDL) principle, [13–
15], which is a general method of inductive inference based
on the idea that a model’s goodness of fit can be objectively
measured by estimating the amount of data compression
that it permits. The work proposed here is not formally an
application of these methods but does share an interest in
coding techniques for graphs.

3.1. Coding-Directed Graphs. The present objective is to
devise a coding algorithm for a directed graph G using
efficient coding principles [16]. The object to be coded is
first reduced to a list of elements in a predetermined order
(letters of a text or pixels of an image). Each element is
coded separately into a codeword of binary digits, which

are then concatenated to form one single binary string. It is
important to ensure that each distinct object is converted to
a unique code, and this may be done by ensuring that the
codewords possess the prefix property; that is, no codeword is
a prefix of another codeword. The simplest such code is the
uniform code. If an element to be coded is one of N type types,
then each type can be uniquely assigned a binary string of

log2(N type)� bits, and any concatenation of uniform codes
can be uniquely decoded. In the following development we
will forgo the practice of rounding up to the next integer,
since in the context of inference it is more intuitive for the
code length to be a strictly increasing function of N type.

In order to code a nonnegative integer using a uniform
code we would have to specify an upper bound Imax, giving
Imax + 1 types, and so a codeword length of 
log2(Imax + 1)�
for each integer. If we expect most integers to be significantly
smaller than Imax, this would be inefficient. We will therefore
make use of a universal code b(i) proposed in [17]. One
segment of the code consists of a binary representation of the
integer, with no leading 0’s. The code is prefixed by a string
consisting of 0’s equal in length to the binary string followed
by a 1. Thus, b(0) = 1, b(1) = 011, b(2) = 00110, and so on.
In general, we will have code length |b(i)| = 1+2�1+log2(i)

when i > 0, and |b(i)| = 1 for i = 0. This code is a prefix code,
with the advantage that no upper bound need be specified,
and it will be more efficient when smaller integer values are
expected to be most prevalent. In the work which follows, we
omit the rounding operation, and so accept the approximate
code length of b(i) as

b(i) =
⎧

⎨

⎩

1, i = 0,

3 + 2log2(i), i > 0.
(9)

Again, it is more natural that b(i) be strictly increasing.
A directed order n graph may be represented as an n ×

n 0-1 adjacency graph (the class of such matrices is denoted
by Mn). An edge from node j to i is indicated by a 1 entry
for row i and column j. Such a matrix may be completely
represented by an ordered list of n subsets of {1, . . . ,n}, in
which the ith subset represents the entries of row i equaling
1. The graph itself may therefore be coded as a concatenation
of n codewords representing the subsets. We assume that the
value of n is available to the decoder.

To code a subset, a uniform code may used, so that any
subset from n labels would be coded using n bits. However,
in the applications considered here, it is often expected that
the size of the subset is considerably smaller than n. An
alternative strategy is to first specify the size k of the subset
and then apply a uniform code to represent all subsets of that
size. This involves concatenating a codeword for k (using the
universal integer code) and a codeword for the subset (using

a uniform code for
( n

k

)

possible subsets). A subset of size k
from m objects will then be assigned a code length of

B0(k,m) = b(k) + log2

⎛

⎝

m

k

⎞

⎠. (10)

We refer to this code as an size indexed code, in contrast to
a uniform code. A code for matrix M ∈ Mn is then easily
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constructed by concatenating codewords for each row subset,
giving code length

C0(M) =
n
∑

i=1

B0(ki,n), (11)

where ki is the number of 1 entries in row i. This code is
similar to the one proposed in [11] but assumes that log2(n)
bits are used to code ki, as required by a uniform code on n
integers.

There will be some advantage to considering a modifi-
cation to C0(M). If only a relatively small subset of nodes
possess edges, then we may instead code a submatrix of
M. Let L(M) be the set of nodes which are part of at least
one edge. Possibly, |L(M)| � n, in which case it may be
advantageous to code only the L(M) × L(M) submatrix of
M. But we would also need to code L(M) itself. This object
may be converted to codewords using the size indexed code
and will appear in the code as a header, followed by the
submatrix coded as described above. Thus, the code length
for the L(M)× L(M) submatrix is

CM(M) = B0(|L(M)|,n) +
∑

i∈L(M)

B0(ki, |L(M)|). (12)

3.2. Properties of Graph Codes. We now examine the prop-
erties of the scores. In Algorithm A comparisons of graphs
will be between those with equal numbers of edges. We will
consider an asymptotic scenario in which the size of the
largest subset is bounded by m, with m � n. Applying
Lemma 5 of [18] we may write

C0(M) = NE(M)log2(n) +

⎛

⎝

n
∑

i=1

b(ki)− log2(ki!)

⎞

⎠ + O(1),

(13)

where NE(M) is the number of 1 entries in M (i.e., the
number of edges in the graph). If we now let n → ∞,
assume that NE(M) grows proportionally with n, and that
the subset sizes remain bounded by m, then C0(M) =
NE(M)log2(n) + O(n). This means that when comparing
graphs M, M′ with equal numbers of edges the dominant
terms of C0(M),C0(M′) are equal, since NE(M) = NE(M′)
and the comparison will depend on the remaining dominant
term

Ck
0(M) =

n
∑

i=1

b(ki)− log2(ki!). (14)

We let Zn be the set of all n-dimensional vectors of
nonnegative integers.

Definition 3. A mapping f : Zn → R, n ≥ 2 is called

stepwise monotone when the following holds. Let ˜k be any
element of Zn with at least two nonzero elements. Let ki, kj
be any two components of ˜k for which 1 ≤ ki ≤ kj . Then

let ˜k′ ∈ Zn be equal to ˜k, except that k′i = ki − 1 and

k′j = kj + 1. Then f (˜k′) ≤ f (˜k), and f is called strictly
stepwise monotone when the inequality can be replaced with
strict inequality.

Note that Ck
0(M) is a function of the vector of subset

sizes ˜k = (k1, . . . , kn). The stepwise operation described in
Definition 3 generates a hierarchy of subset lists based on the
tendency to concentrate larger subset sizes in fewer subsets.
In terms of graphs, the ranking will be based on the tendency
for a fixed number of edges to target a smaller number
of nodes. We now show that Ck

0(M) is strictly stepwise
monotone.

Lemma 3. The mapping Ck
0(M), interpreted as a function

of the row totals ˜k = (k1, . . . , kn) of M, is strictly stepwise
monotone.

Proof. Noting the form of b(i) in (9) it is convenient to write
3 + 2log2(i) = 1 + 2log2(2i). Then from (14) we have

Ck
0(M) = n + log2

(

Πki>04k2
i

ki!

)

. (15)

Let ˜k and ˜k′ be two vectors from Zn as described in
Definition 3. If ki > 1, the ratio of the product in the second
term of (15) may be written as

Πk′i >04
(

k′i
)2
/k′i !

Πki>04k2
i /ki!

=
(ki − 1)2

(

kj + 1
)2
/(ki − 1)!

(

kj + 1
)

!

k2
i k

2
j /ki!kj !

.

(16)

Consider the quantities AL = (ab)2/(a!b!) and AU = ((a −
1)(b + 1))2/((a − 1)!(b + 1)!), where a, b are any integers for
which 1 ≤ a ≤ b. Then (a− 1)(b + 1) = ab + a− b− 1 < ab,
and (a − 1)!(b + 1)! = a!b!(b + 1)/(a) > a!b!, from which it
follows AU < AL. Using (16) this inequality may be applied
directly to the second term of (15) to verify the lemma. If
ki = 1, then we have the corresponding ratio:

Πk′i >04
(

k′i
)2
/k′i !

Πki>04k2
i /ki!

=
(

kj + 1
)2
/
(

kj + 1
)

!

4k2
j /k j !

= kj + 1

4k2
j

, (17)

which can easily be shown to be less than one for all kj ≥ 1.
The lemma therefore holds for this case as well.

Consider four graphs of n nodes consisting of k = 4 edges
contained in the subgraphs in Figure 1. Denote the respective
adjacency matrices by MA, MB, MC , MD. It is easily verified
that C0(MA) < C0(MB) = C0(MC) = C0(MD). This
leads to two problems. First, we would like MA and MB

to be scored equally. Second, graph (C) clearly has more
interesting structure than (D), but it has the same score. To
address the first problem, we may score the transpose of the
adjacency matrices, which gives C0(MA) = C0(MT

B ).
The second problem can be addressed using the modified

score CM . We have, for fixed k� n,

CM(MC) = (k + 1)log2(n) + o
(

log2(n)
)

,

CM(MD) = 2klog2(n) + o
(

log2(n)
)

,

C0(MC) = C0(MD) = n + o(n).

(18)
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Figure 1: Four sample graphs, each of 4 edges.

Thus, for large enough n, CM(MC) < C0(MC) and CM(MD) <
C0(MD), so that CM will be smaller for MC and MD. Similarly
CM(MC) < CM(MD), so that CM can be seen to be sensitive
to chain structure, whereas C0 is not. We then adopt the
compound score:

λ = min
{

CM(M),CM

(

MT
)}

. (19)

We omit from λ a prefix consisting of a fixed number of bits
which will indicate which score was the minimum.

4. Examples

In this section we apply Algorithm A to a set of examples,
first a synthetic network based on a typical pathway, then one
based on yeast genome perturbation experiments.

4.1. Synthetic Network (MAP Kinase). The pathway illus-
trated in Figure 2 represents a known MAP kinase signal
transduction cascade, used in [6] to illustrate a network
model. This pathway possesses 12 genes and 13 edges. We
will add N − 12 spurious genes to the model, allowing N
to vary. The objective is to simulate a data matrix D as
defined in steps (S1)-(S2), which might plausibly summarize
experiments generated by this network. The strategy will
be to first demonstrate the methodology on a statistically
favorable case to clarify the objectives. The case will then be
modified to present a scenario in which statistical noise plays
a more prominent role.

4.1.1. Model Simulation. Let M∗ be the adjacency matrix of
the graph in Figure 2. Gene j directly regulates i if M∗

i j =
1. We also expect perturbation of j to affect genes further
downstream; so we say that i and j are in an order k
relationship if there is a path from j to i of k edges, and
no shorter path exists. This holds if the i jth element of the
product (M∗)k

′
is nonzero for k′ = k and zero for k′ < k.

If i and j are in an order k relationship simulate a normal
random variable with mean μk and variance 1, then let Dij

be the P-value associated with a hypothesis test H0 : μ = 0
against H1 : μ > 0. If i and j have no relationship, let Dij be
uniformly distributed.

A model is defined by characteristics μk and N . To study
a given model the data matrix D is replicated 2500 times as
described above. For each replication we apply Algorithm A,
setting K = 100, R = R∗ = 2500. The compound score λ
of (19) is used. We use the elementwise exchangeable null
hypothesis H1

0 .

4.1.2. Algorithm Evaluation. A study of the algorithm
must take into account its dual purpose. We may accept
Gacc(D,Pthr) as an estimated accessibility graph which can
be compared to the true graph. On the other hand, viewed
as a multiple testing procedure, the objective is an efficient
choice of Pthr along a type of error curve, giving the expected
number of true edges as a function of the total number of
edges within graphs of the sequence G(D). The properties
of the error curve define the accuracy with which a cellular
network can be inferred. Ideally, the error curve increases
with slope 1 until the graph is constructed and then remains
constant. Statistical variation forces deviation from this ideal;
so the goal in the selection of Pthr is to identify a position
along the error curve such that below (or above) this position
most new edges are true (or false) positives.

We now discuss the calculation of the error curve. It
will be convenient to restrict attention to relationships up
to an order k. Suppose that Gk

0 is the true order k graph,
in the sense that it contains edge j → i if and only if i
and j have an order k′ ≤ k relationship. In our example,
G1

0 is equivalent to the graph in Figure 2. Let D′ represent
a simulated replicate from the given model, from which we
construct sequence G′ = G(D′). Let rki be the number of
edges of Gk

0 contained in element g′i of G′. We will estimate
two forms of the error curve. For the first, using replicates
of G′ we calculate the sample mean value rki of rki for each
i = 1, . . . ,K . For the second, for each replicate G′ we use the
edge value i′ minimizing Z(G′ | ˜G∗), thus identifying Pthr,
then capturing the pairs (i′, rki′) to be displayed in the form of
a scatter plot.
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Figure 2: Sample MAP Kinase network.

4.1.3. Model 1 (Direct Regulation Only). We will first con-
sider a simplified version of the problem, in which order k >
1 regulatory relationships are ignored (μk = 0 for k > 1). We
study models defined by μ1 = 2, 3, 4 and N = 13, 15, . . . , 100
in increments of 5. Each test network is replicated 2500
times. Figure 3 summarizes the achieved global significance
for the statistics proposed in (8). In Plot 1 the four statistics
proposed in (8) are applied to the models defined by μ1 = 4
over the proposed range of N . The plot shows the average
attained global significance levels on a log scale (base 10).
The horizontal axis represents a significance level of 0.05.
Noticeably greater power is demonstrated for statistic ̂WK

Z ,
and significance levels are well below the 0.05 value over most
of the range of N , demonstrating the ability of the procedure
to detect overall network structure. Sensitivity to the strength
of the statistical evidence is demonstrated in Figure 3, Plot 2,
in which average significance levels for models μ1 = 2, 3, 4
over the proposed range of N are reported. Here we use only
statistic ̂WK

Z , which will become our default choice.
An interesting feature of these plots is the increase in

power with the increase in the number of spurious genes.
This is the opposite of what is usually expected in gene
discovery but follows from the use of graphical structure
as statistical evidence. The existence of such structure
implies higher connectivity of a smaller subset of genes than
would occur at random. The existence of a larger pool of
unconnected genes should, to some extent, contribute to
the significance of graphical discovery, since the existing
structure would be less likely to have occurred by chance.
Of course, the competing effect of false positives usually
associated with multiple hypothesis testing will also exist.
The relative importance of these effects remains to be
analyzed.

A single simulation will illustrate the implementation of
the algorithm. Here we assume N = 60 candidate genes, with

effect size defined by μ1 = 4. The Z-score values Z(G(D) |
˜G∗) are shown in Plot 1 of Figure 4. A clear minimum point
is evident at 9 edges. Plot 2 shows the cumulative proportion
of true positives among the edges defining the graphs in the
sequence G(D) (i.e., the number of true edges in Gi(D) by
edge). The minimum point at the 9th edge is clearly a point at
which the graph is almost completely constructed, and above
which most new edges will be false positives.

4.1.4. Model 2 (Including Transitive Regulation). We next
include evidence of transitive regulations by simulating
perturbation effects of size (μ1,μ2,μ3,μ4) = (3, 2, 1, 1), with
μk = 0 for k > 4. We will examine specifically the N = 60
gene model and use 5000 replicates. The error curve is shown
in Figure 5 (Plot 1) for up to order k = 4 relationships. Note
that the error curve based on selected minimum points yields
slightly higher values. We conjecture that the minimum
selection process introduces greater accuracy (discussion in
the next subsection pertains to this issue). As expected,
both error curves are at first of unit slope, up until a point
at which false positives begin to dominate. As emphasized
earlier, the error curve represents an inherent limit of the
accuracy possible under given experimental conditions. The
role of our procedure is therefore to determine a suitable
location along that curve. In Figure 5 (Plot 2), a histogram of
the captured minimum points i′ is shown. Interestingly, the
mode of the histogram is located precisely where the error
curve is no longer of unit slope, which is the point we wish
to identify.

4.2. Yeast Genome Expression Data. In [19] a series of gene
deletion and drug experiments are reported, resulting in
a compendium of 300 microarray gene expression profiles
on the yeast genome. We extracted 266 genes for which
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Figure 3: Global significance plots for simulation study. Number of genes N is varied within each plot. Probabilities are given on a base 10

logarithmic scale. A log10(0.05) axis is indicated. (a): Case μ1 = 4 using statistics ̂WK
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Z [−]; W
K
Z [− −]. (b): Cases μ1 = 2

[··]; μ1 = 3 [− −]; μ1 = 4 [−] using statistic ̂WK
Z .

−4

−2

0

2

0 20 10060

Z
sc

or
e

Number of edges

(a)

0.2

0.6

0 20 10060

Tr
u

e
+

ve
(c

u
m

u
la

ti
ve

)

Number of edges

(b)

Figure 4: Properties of sample data set D, for N = 60 genes, μ1 = 4. (a): Value of Z-score sequence Z(G(D) | ˜G∗). Minimum point is
located at edge 9, indicated by dashed line. (b): Cumulative proportion of true positive edges within sequence G(D). There are 13 true edges.
Minimum point of Z(G(D) | ˜G∗) (Plot 1) is indicated by dashed line.

single deletion experiments were performed. By matching
the responses for those genes a 266 × 266 data matrix D of
perturbation effect P-values was constructed (the P-values
used are those reported in [19]). Algorithm A was applied
using a maximum of K = 1000 edges, using R = R∗ = 500

replications of a null matrix; then Z(G(D) | ˜G∗) was
calculated as above. These replications were supplemented
by an application with settings K = 100, R = R∗ =
5000. We use the element wise exchangeable null hypothesis
H1

0 .
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Figure 5: Sample data set D, for N = 60 genes, (μ1,μ2,μ3,μ4) = (3, 2, 1, 1). (a): error curve calculated by mean true positive rki [− · −],
and scatter plot of selected minimum points and true positives (i′, rki′ ). We use k = 4. The dashed line indicates the mode in Plot 2.
(b): Histogram of selected minimum points i′. The mode is indicated by the dashed line.
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Figure 6: Values of Z(G(D) | ˜G∗) for yeast data. Edge ranges 1–1000 and 1–25.

The Z-scores are shown in Figure 6. A significant devi-
ation from zero is shown almost immediately and persists
throughout the observed range. The global P-value at 1-2
edges is estimated as 0.0084 and decreases rapidly beyond
this point. Table 1 lists the edges associated with the 10
lowest P-values in D. At this point obvious graph structure
is apparent, as the first four edges all have a common
parent tup1. It is interesting to note that the z-score falls

as edges 2 to 4 are added, each of which contains a gene
found in the previous edges. Edge 5, however, introduces
two new genes, at which point the Z-score increases. In
fact, this rule persists up to the 12th edge; that is, the z-
score decreases if and only if at least one gene of a new
edge exists among the previous edges. It also holds among
83%, 74%, and 63% of the first 25, 100, and 1000 edges,
respectively.



EURASIP Journal on Bioinformatics and Systems Biology 11

0

4000

8000

0 800400

M
ea

n
n

u
ll

sc
or

e

Number of edges

(a)

15

10

20

5

0 800400

SD
n

u
ll

sc
or

e

Number of edges

(b)

Figure 7: Mean and standard deviation of graph scores for 266× 266 null perturbation matrix by edge number.
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Figure 8: Estimated accessibility graphs for yeast genome data, using 190 and 300 edges. The choice of 190 genes represents the application
of the Benjamini-Hochberg FDR control procedure.

In this example, the Z-score is clearly able to distin-
guish between edges which contribute to graph structure
and those that do not up to some number of edges.
The application of this principle over a large range of
edges is complicated by the increasingly complex statistical
properties of the graph score, as suggested in Figure 7.
While the mean score increases smoothly, the growth of
the standard deviation is more complicated. We would
expect this to some degree. The number of offspring for
each node would be approximately Poisson distributed
when such numbers are small, but eventually this proba-
bility law will no longer hold when subsets become large
enough. It is therefore problematic to identify interesting
features of the Z-score plot over large ranges of edge
number.

Finally, we make a note comparing multiple testing
procedures (MTPs) and our proposed graph-based proce-
dure. Accepting the P-values reported in [19], two well-
known MTPs were applied to the P-values of matrix
D (see [1] for details). Using the Bonferroni procedure
(FWER = 0.05) 41 P-values are rejected, whereas using the
Benjamini-Hochberg procedure (FDR = 0.05) 190 P-values
are rejected. Figure 8 displays the connectivity graphs formed
from the first 190 and the first 300 edges. All edges point
“downward” in the diagram (arrows are omitted for clarity).
Three exceptions are indicated by dashed lines, which are
bidirectional. The graphs contain no cyclic behavior other
than these edges (a simple simulation experiment confirms
that this level of cyclicity is compatible with the Erdös-Renyi
random graph model).
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Table 1: Graph edges associated with 10 lowest ranking P-values
for yeast data.

P-val Response Perturbed P-val Response Perturbed

Rank Gene Gene Rank Gene Gene

1 hpa3 tup1 6 yer066c-a tup1

2 yor009w tup1 7 rts1 yor015w

3 pau2 tup1 8 yhr022c ssn6

4 yhr022c tup1 9 phd1 tup1

5 ste2 ste12 10 ald5 yer050c

If we accept the 190 edge graph as that resulting from
the application of an MTP, we then note that the proposed
graph-based method results in significantly more structural
discovery. The global significance level for a graph with 1000
edges can be taken as extremely small from an estimated Z-
score of −95.4. This significance level applies to subgraphs
from the sequence G(D). Similarly, additional structure in
the 300 gene graph compared to the 190 gene graph can be
clearly seen. In order to define a “highly connected gene,” we
simulate random graphs to estimate a distribution of a gene’s
edge order X . For N = 190 and N = 300 edges among 266
nodes we have P(X ≥ 4) ≈ 0.006 and P(X ≥ 5) ≈ 0.006.
Thus, we define any gene with at least 4 and 5 edges as “highly
connected” in the respective graphs. Under these criteria, the
respective graphs contain 33 and 43 such genes. The most
connected gene in the 190 gene graph is tup1 with 38 edges.
This gene is also the most connected gene in the 300 gene
graph (46 edges). In general, more highly connected genes
are added between edges 190 and 300, while additional edges
are added to already highly connected genes.

5. Conclusion

A common problem in the statistical analysis of high-
throughput data is the selection of a threshold for statistical
evidence which controls false discovery. Such data is often
used to construct graphical models of gene interactions.
A threshold selection procedure was proposed which is
based on the observed graphical structure implied by a
given threshold. This procedure can be used both for
threshold selection and to estimate a global significance
level for graphical structure. The method was demonstrated
on a small simulated network as well as on the “Rosetta
Compendium” [19] of yeast genome expression profiles. The
methodology proved to be accurate and computationally
feasible.

Further investigation is warranted in a number of issues.
The graphs investigated here were unconstrained directed
graphs. Application to undirected graphs and directed
acyclic graphs (DAGs) will require more sophisticated graph
simulation algorithms. Additionally, the long range statistical
behavior of the proposed graph code is complex. Such issues
will need to be carefully examined before a general threshold
selection technique can be proposed.

A software implementation of the proposed procedures
is available from the author’s web site, in the form of an R

library at http://www.urmc.rochester.edu/biostat/people/
faculty/almudevar.cfm.
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