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There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and
protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance
of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is
whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable,
nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted
a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that,
under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of
unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat
the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest
neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly.
Representative experimental results are presented and discussed in this work.

Copyright © 2009 T. T. Vu and U. M. Braga-Neto. This is an open access article distributed under the Creative Commons
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1. Introduction

Randomized ensemble methods for classifier design combine
the decision of an ensemble of classifiers designed on
randomly perturbed versions of the available data [1–5].
The combination is often done by means of majority voting
among the individual classifier decisions [4–6], whereas the
data perturbation usually employs the bootstrap resampling
approach, which corresponds to sampling uniformly with
replacement from the original data [7, 8]. The combination
of bootstrap resampling and majority voting is known as
bootstrap aggregation or bagging [4, 5].

There has been considerable interest recently in the
application of bagging in the classification of both gene-
expression data [9–12] and protein-abundance mass spec-
trometry data [13–18]. However, there is scant theoretical
justification for the use of this heuristic, other than the
expectation that combining the decision of several classifiers
will regularize and improve the performance of unstable
overfitting classification rules, such as unpruned decision

trees, provided one uses a large enough number of classifiers
in the ensemble [4, 5]. It is also claimed that ensemble rules
“do not overfit,” meaning that classification error converges
as the number of component classifiers tends to infinity [5].

However, the main performance issue is not whether the
ensemble scheme improves the classification error of a single
unstable overfitting classifier, or whether its classification
error converges to a fixed limit; these are important ques-
tions, which have been studied in the literature (in particular
when the component classifiers are decision trees) [5, 19–
23], but the question of main practical interest is whether the
ensemble scheme will improve the performance of unstable
overfitting classifiers sufficiently to beat the performance
of single stable, nonoverfitting classifiers, particularly in
small-sample settings. Therefore, there is a pressing need
to examine rigorously the suitability and validity of the
ensemble approach in the classification of small-sample
genomic and proteomic data. In this paper, we present results
from a comprehensive empirical study concerning the effect
of bagging on the performance of several classification rules,
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including diagonal and plain linear discriminant analysis,
3-nearest neighbors, CART decision trees, and neural net-
works, using real data from published microarray and mass
spectrometry studies. Here we are concerned exclusively
with the performance in terms of the true classification
error, and therefore we employ filter-based feature selection
and holdout estimation based on large samples in order
to allow accurate classification error estimation. Similar
studies recently published [11, 12] rely on small-sample
wrapper feature selection and small-sample error estimation
methods, which will obscure the issue of how bagging
really affects the true classification error. In particular, there
is evidence that filter-based feature selection outperforms
wrapper feature selection in small-sample settings [24]. In
our experiments, we employ the one-tailed paired t-test
to assess whether the expected true classification error is
significantly smaller for the bagged classifier as opposed
to the original base classifier, under different number of
samples, dimensionality, and number of classifiers in the
ensemble. Clearly, the heuristic is beneficial for the particular
classification rule if and only there is a significant decrease
in expected classification error, otherwise the procedure is
to be avoided; however the magnitude of improvement is
also a factor—a small improvement in performance may not
be worth the extra computation required (which is roughly
m times larger for the bagging classifier, where m is the
number of classifiers in the ensemble). The full results of
the empirical study are available on a companion website
http://www.ece.tamu.edu/∼ulisses/bagging/index.html.

2. Randomized Ensemble Classification Rules

Classification involves a feature vector X in a feature space
V , a label Y ∈ {0, 1}, and a classifier ψ : V → {0, 1},
such that ψ(x) attempts to predict the value of Y for a given
observation X = x. The joint feature-label distribution F
of the pair (X ,Y) completely characterizes the stochastic
properties of the classification problem. In practice, a
classification rule is used to design a classifier based on
sample training data. Working formally, a classification rule
is a mapping Ψn : [V × {0, 1}]n → {0, 1}V , which takes
an i.i.d. sample Sn = {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)} of
feature-label pairs drawn from the feature-label distribution
to a designed classifier ψn = Ψn(Sn). The classification error
is the probability that classification is erroneous given the
sample data, that is, εn = P(ψn(X) /=Y | Sn). Note that
the classification error is random only through the training
data Sn. The expected classification error E[εn] is the average
classification error over all possible sample data sets; it is a
fixed parameter of the classification rule and feature-label
distribution, and used as the measure of performance of the
former given the latter.

Randomization approaches based on resampling can
be seen as drawing i.i.d. samples S∗k = {(X∗1 ,Y∗1 ), (X∗2 ,
Y∗2 ), . . . , (X∗k ,Y∗k )} from a surrogate joint-feature label dis-
tribution F∗, which is a function of the original training data
Sn. In the bootstrap resampling approach, one has k = n,
and the randomized sample S∗n corresponds to sampling

uniformly n training points from Sn with replacement. This
corresponds to using the empirical distribution of the data
Sn as the surrogate joint-feature label distribution F∗; the
empirical distribution assigns discrete probability mass 1/n
at each observed data point in Sn. Some of the original
training points may appear multiple times, whereas others
may not appear at all in the bootstrap sample S∗n . Note
that, given Sn, the bootstrap sample S∗n is conditionally
independent from the original feature-label distribution F.

In aggregation by majority voting, a classifier is obtained
based on majority voting among individual classifiers
designed on the randomized samples S∗k using the original
classification rule Ψn. This leads to an ensemble classification
rule ΨR

n , such that
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for x ∈ V , where expectation is with respect to the random
mechanism F∗, fixed at the observed value of Sn. For
bootstrap majority voting, or bagging, the expectation in (1)
usually has to be approximated by Monte Carlo sampling,
which leads to the “bagged” classifier:
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where the classifiers ψ
∗( j)
n are designed by the original

classification rule Ψn on bootstrap samples S
∗( j)
n , for j =

1, . . . ,m, for large enough m (notice the parallel with the
development in [25], particulary equations (2.8)–(2.10), and
accompanying discussion).

The issue of how large m has to be so that (2) is
a good Monte Carlo approximation is a critical issue in
the application of bagging. Note that m represents the
number of classifiers that must be designed to be part of
the ensemble, so that a computational problem may emerge
if m is made too large. In addition, even if a suitable
m is found, the performance of the ensemble must be
compared to that of the base classification rule, to see if
there is significant improvement. Even more importantly, the
performance of the ensemble has to be compared to that
of other classification rules; that the ensemble improves the
performance of an unstable overfitting classifier is of small
value if it can be bested by a single stable, nonoverfitting
classifier. In the next section, we present a comprehensive
empirical study that addresses these questions.

3. Experimental Study

In this section, we report the results obtained from a large
simulation study based on publicly-available patient data
from genomic and proteomic studies, which measured the
performance of the bagging heuristic through the expected
classification error, for varying number of component classi-
fiers, sample size, and dimensionality.
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3.1. Methods. We considered in our experiment several clas-
sification rules, listed here in order of complexity: diagonal
linear discriminant analysis (DLDA), linear discriminant
analysis (LDA), 3-nearest neighbors (3NN), decision trees
(CART), and neural networks (NNET) [26, 27]. DLDA is
an extension of LDA where only the diagonal elements (the
variances) of the covariance matrix are estimated, while the
off-diagonal elements (the covariances) are assumed to be
zero. Bagging is applied to each of these base classification
rules and its performance recorded for varying number
of individual classifiers. The neural network consists of
a one-hidden layer with 4 nodes and standard sigmoids
as nonlinearities. The network is trained by Levenberg-
Marquardt optimization with a maximum of 30 iterations.
CART is applied with a stopping criterion. Splitting is
stopped when there are fewer than 3 points in a given
node. This is distinct from the approach advocated in [5]
for random forests, where unpruned, fully grown trees are
used instead; the reason for this is that we did not attempt
to implement the approach in [5] (which involves concepts
as random node splitting and is thus specific to decision
trees), but rather to study the behavior of bagging, which is
the centerpiece of such ensemble methods, across different
classification rules. Resampling is done by means of balanced
bootstrapping, where all samples are made to appear exactly
the same number of times in the computation [28].

We selected data sets with large number N of samples
(see below) in order to be able to estimate the true error
accurately using held out testing data. In each case, 1000
training data sets of size n = 20, 40, and 60 were drawn
uniformly and independently from the total pool of N
samples. The training data are drawn in a stratified fashion,
following the approximate proportion of each class in the
original data. Based on the training data, a filter-based gene
selection step is employed to select the top p discriminating
genes; we considered in this study p = 2, 3, 5, 8. The
univariate feature selection methods used in the filter step are
the Welch two-sample t-test [29] and the RELIEF method
[30]—in the latter case, we employ the 1-nearest neighbor
method when searching for hits and misses. After classifier
design, the true classification error for each data set of size n
is approximated by a holdout estimator, whereby the N − n
sample points not drawn are used as the test set (a good
approximation to the classification error, given that N � n).
The expected classification error is then estimated as the
sample mean of classification error over the 1000 training
data sets. The sample size n is kept small, as we are interested
in the small-sample properties of bagging. Note also that
we also must have N � n in order to provide for large
enough testing sets, as well as to make sure that consecutive
training sets do not significantly overlap, so that the expected
classification error can be accurately approximated. As can
be easily verified, the expected ratio of overlapping sample
points between two samples of size n from a population of
size N is given simply by n/N . In all cases considered here
the expected overlap is around 20% less, which we consider
to be acceptable, except in the case of the lung cancer data
set with n = 60. This latter case is therefore not included
in our results. The one-tailed paired t-test is employed to

assess whether the ensemble classifier has an expected error
that is significantly smaller than that of the corresponding
individual classifier.

3.2. Data Sets. We utilized the following publicly-available
data sets from published studies in order to study the
performance of bagging in the context of genomics and
proteomics applications.

3.2.1. Breast Cancer Gene Expression Data. These data come
from the breast cancer classification study in [31], which
analyzed N = 295 gene-expression microarrays containing a
total of 25760 transcripts each. Filter-based feature selection
was performed on a 70-gene prognosis profile, previously
published by the same authors in [32]. Classification is
between the good-prognosis class (115 samples), and the
poor-prognosis class (180 samples), where prognosis is
determined retrospectively in terms of survivability [31].

3.2.2. Lung Cancer Gene Expression Data. We employed
here the data set “A” from the study in [33] on nonsmall-
cell lung carcinomas (NSCLC), which analyzed N = 186
gene-expression microarrays containing a total of 12600
transcripts each. NSCLC is subclassified as adenocarcinomas,
squamous cell carcinomas and large-cell carcinomas, of
which adenocarcinomas are the most common subtypes and
of interest to classify from other subtypes of NSCLC. Classi-
fication is thus between adenocarcinomas (139 samples) and
non-adenocarcinomas (47 samples).

3.2.3. Prostate Cancer Protein Abundance Data. Given the
recent keen interest on deriving serum-based proteomic
biomarkers for the diagnosis of cancer [34], we also included
in this study data from a proteomic study of prostate
cancer reported in [35]. It consists of SELDI-TOF mass
spectrometry of N = 326 samples, which yield mass
spectra for 45000 m/z (mass over charge) values. Filter-based
feature selection is employed to find the top discriminatory
m/z values to be used in the experiment. Classification
is between prostate cancer patients (167 samples) and
noncancer patients, including benign prostatic hyperplasia
and healthy patients (159 samples). We use the raw spectra
values, without baseline subtraction, as we found that this
leads to better classification rates.

3.3. Results and Discussion. We present results for sam-
ple sizes n = 20 and n = 40 and dimensionality
p = 2 and p = 5, which are representative of the
full set of results, available on the companion website
http://www.ece.tamu.edu/∼ulisses/bagging/index.html. The
case p = 2 is displayed in Tables 1, 2, and 3, each
of which corresponds to a different data set. Each table
displays the expected classification error as a function of
the number m of classifiers used in the ensemble, for
different base classification rules, feature selection methods,
and sample sizes. We used in all cases an odd number
m of classifiers in the ensembles, to avoid tie-breaking
issues. Errors that are smaller for the ensemble classifier as
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Table 1: Expected classification error of selected experiments for breast cancer gene-expression data under two different features selection
methods (t-test and RELIEF) for p = 2. Bold-face type indicates the values that are smaller for the ensemble classifier as compared to a single
classifier at a 99% significance level, according to the one-tailed paired t-test.

Rule FS n Single m = 5 m = 11 m = 15 m = 21 m = 25 m = 31 m = 35 m = 41 m = 45 m = 51

DLDA t-test 20 0.202 0.215 0.208 0.206 0.204 0.204 0.204 0.204 0.203 0.204 0.203

DLDA t-test 40 0.198 0.205 0.201 0.200 0.200 0.199 0.199 0.199 0.199 0.199 0.199

DLDA RELIEF 20 0.202 0.215 0.207 0.206 0.204 0.204 0.204 0.203 0.203 0.203 0.203

DLDA RELIEF 40 0.198 0.206 0.201 0.201 0.200 0.200 0.199 0.199 0.199 0.199 0.199

LDA t-test 20 0.212 0.237 0.224 0.220 0.217 0.217 0.216 0.216 0.215 0.215 0.214

LDA t-test 40 0.204 0.217 0.209 0.208 0.207 0.206 0.206 0.206 0.205 0.205 0.205

LDA RELIEF 20 0.213 0.239 0.225 0.222 0.219 0.218 0.218 0.217 0.216 0.216 0.216

LDA RELIEF 40 0.203 0.218 0.210 0.207 0.206 0.206 0.205 0.205 0.205 0.205 0.205

3NN t-test 20 0.230 0.281 0.246 0.241 0.235 0.234 0.231 0.231 0.230 0.229 0.229

3NN t-test 40 0.228 0.274 0.241 0.235 0.231 0.229 0.228 0.227 0.226 0.226 0.225

3NN RELIEF 20 0.234 0.282 0.248 0.242 0.238 0.236 0.234 0.234 0.233 0.233 0.232

3NN RELIEF 40 0.227 0.271 0.241 0.235 0.231 0.229 0.227 0.227 0.226 0.225 0.225

CART t-test 20 0.259 0.297 0.263 0.256 0.250 0.247 0.246 0.244 0.243 0.242 0.242

CART t-test 40 0.257 0.294 0.258 0.252 0.245 0.244 0.242 0.240 0.239 0.239 0.237

CART RELIEF 20 0.263 0.299 0.265 0.258 0.253 0.250 0.247 0.247 0.245 0.245 0.244

CART RELIEF 40 0.256 0.293 0.260 0.253 0.245 0.244 0.241 0.240 0.239 0.239 0.238

NNET t-test 20 0.252 0.293 0.246 0.240 0.230 0.230 0.225 0.224 0.223 0.222 0.221

NNET t-test 40 0.226 0.256 0.225 0.219 0.215 0.213 0.212 0.210 0.210 0.209 0.209

NNET RELIEF 20 0.255 0.298 0.248 0.240 0.233 0.232 0.229 0.228 0.226 0.225 0.224

NNET RELIEF 40 0.230 0.260 0.227 0.220 0.216 0.213 0.213 0.212 0.211 0.210 0.209

Table 2: Expected classification error of selected experiments for lung cancer gene-expression data under two different features selection
methods (t-test and RELIEF) for p = 2. Bold-face type indicates the values that are smaller for the ensemble classifier as compared to a single
classifier at a 99% significance level, according to the one-tailed paired t-test.

Rule FS n Single m = 5 m = 11 m = 15 m = 21 m = 25 m = 31 m = 35 m = 41 m = 45 m = 51

DLDA t-test 20 0.190 0.191 0.190 0.190 0.189 0.190 0.189 0.189 0.190 0.190 0.190

DLDA t-test 40 0.186 0.187 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186

DLDA RELIEF 20 0.235 0.253 0.238 0.239 0.235 0.236 0.233 0.233 0.234 0.232 0.233

DLDA RELIEF 40 0.207 0.212 0.209 0.208 0.207 0.207 0.207 0.207 0.207 0.207 0.206

LDA t-test 20 0.201 0.206 0.203 0.203 0.202 0.202 0.203 0.202 0.202 0.202 0.203

LDA t-test 40 0.192 0.194 0.193 0.193 0.193 0.193 0.192 0.192 0.193 0.192 0.192

LDA RELIEF 20 0.262 0.295 0.274 0.271 0.265 0.265 0.263 0.263 0.260 0.261 0.261

LDA RELIEF 40 0.208 0.223 0.214 0.213 0.212 0.212 0.210 0.211 0.210 0.210 0.208

3NN t-test 20 0.122 0.151 0.130 0.126 0.124 0.123 0.122 0.121 0.121 0.121 0.120

3NN t-test 40 0.123 0.147 0.129 0.127 0.125 0.124 0.123 0.123 0.122 0.122 0.121

3NN RELIEF 20 0.247 0.334 0.265 0.258 0.249 0.248 0.246 0.247 0.244 0.244 0.243

3NN RELIEF 40 0.232 0.317 0.252 0.243 0.238 0.235 0.234 0.233 0.232 0.231 0.230

CART t-test 20 0.160 0.182 0.161 0.155 0.152 0.151 0.150 0.149 0.148 0.148 0.147

CART t-test 40 0.156 0.177 0.155 0.150 0.146 0.145 0.144 0.143 0.142 0.142 0.142

CART RELIEF 20 0.297 0.302 0.280 0.274 0.269 0.267 0.266 0.264 0.263 0.262 0.263

CART RELIEF 40 0.297 0.297 0.273 0.268 0.263 0.261 0.260 0.258 0.257 0.257 0.256

NNET t-test 20 0.216 0.244 0.235 0.232 0.231 0.229 0.228 0.228 0.227 0.227 0.226

NNET t-test 40 0.195 0.232 0.215 0.212 0.208 0.207 0.205 0.204 0.203 0.202 0.202

NNET RELIEF 20 0.239 0.257 0.247 0.247 0.244 0.242 0.242 0.241 0.242 0.242 0.241

NNET RELIEF 40 0.231 0.252 0.242 0.241 0.238 0.236 0.235 0.234 0.234 0.235 0.233
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Table 3: Expected classification error of selected experiments for prostate cancer protein-abundance data under two different features
selection methods (t-test and RELIEF) for p = 2. Bold-face type indicates the values that are smaller for the ensemble classifier as compared
to a single classifier at a 99% significance level, according to the one-tailed paired t-test.

Rule FS n Single m = 5 m = 11 m = 15 m = 21 m = 25 m = 31 m = 35 m = 41 m = 45 m = 51

DLDA t-test 20 0.188 0.211 0.199 0.196 0.194 0.194 0.193 0.192 0.191 0.191 0.191

DLDA t-test 40 0.187 0.207 0.196 0.194 0.192 0.191 0.191 0.191 0.190 0.190 0.189

DLDA RELIEF 20 0.468 0.523 0.492 0.484 0.477 0.475 0.471 0.472 0.469 0.467 0.466

DLDA RELIEF 40 0.458 0.502 0.477 0.474 0.465 0.469 0.465 0.463 0.462 0.463 0.460

LDA t-test 20 0.212 0.241 0.225 0.222 0.219 0.218 0.216 0.216 0.215 0.215 0.215

LDA t-test 40 0.198 0.224 0.210 0.208 0.205 0.204 0.203 0.202 0.202 0.202 0.201

LDA RELIEF 20 0.422 0.492 0.449 0.435 0.426 0.426 0.422 0.419 0.417 0.415 0.410

LDA RELIEF 40 0.416 0.479 0.440 0.433 0.426 0.421 0.420 0.418 0.416 0.415 0.413

3NN t-test 20 0.187 0.251 0.203 0.195 0.192 0.189 0.187 0.187 0.186 0.185 0.185

3NN t-test 40 0.153 0.208 0.168 0.162 0.158 0.156 0.154 0.153 0.152 0.152 0.151

3NN RELIEF 20 0.268 0.355 0.307 0.299 0.287 0.284 0.280 0.278 0.277 0.276 0.275

3NN RELIEF 40 0.222 0.283 0.248 0.239 0.233 0.231 0.229 0.228 0.226 0.226 0.224

CART t-test 20 0.232 0.247 0.223 0.218 0.213 0.210 0.209 0.209 0.208 0.209 0.208

CART t-test 40 0.213 0.219 0.198 0.194 0.189 0.189 0.187 0.185 0.185 0.185 0.184

CART RELIEF 20 0.244 0.284 0.259 0.256 0.251 0.249 0.247 0.245 0.244 0.244 0.243

CART RELIEF 40 0.222 0.250 0.233 0.229 0.226 0.225 0.224 0.223 0.223 0.223 0.221

NNET t-test 20 0.297 0.300 0.271 0.266 0.260 0.259 0.256 0.256 0.254 0.254 0.253

NNET t-test 40 0.277 0.274 0.254 0.248 0.244 0.244 0.240 0.241 0.239 0.239 0.239

NNET RELIEF 20 0.345 0.382 0.337 0.324 0.318 0.314 0.313 0.313 0.312 0.309 0.307

NNET RELIEF 40 0.329 0.348 0.312 0.303 0.295 0.294 0.290 0.290 0.290 0.288 0.289

compared to a single classifier at a 99% significance level,
according to the one-tailed paired t-test, are indicated by
bold-face type. This allows one to immediately observe that
bagging is able to improve the performance of the unstable
overfitting CART and NNET classifiers; in most cases, a small
ensemble is required, and the improvement in performance
is substantial. In contrast, bagging does not improve the
performance of the stable, nonoverfitting DLDA, LDA, and
3NN classifiers, except via a large ensemble; and even so the
improvement in magnitude is quite small, and certainly does
not justify the extra computational cost (note that in the
case of the simplest classification rule, DLDA, there is no
improvement at all). This is in agreement with what is known
about the ensemble approach (e.g., see [5]).

However, of larger interest here is the performance
of the ensemble against a single instance of the stable,
nonoverfitting classifiers. This can be better visualized in
the plots of Figures 1, 2, and 3, which display the expected
classification errors as a function of number of component
classifiers in the ensemble, for the case p = 5. The error
of a single classifier is indicated by a horizontal dashed
line. Marks indicate the values that are smaller for the
ensemble classifier as compared to a single component
classifier at a 99% significance level, according to the one-
tailed paired t-test. One observes that as ensemble size
increases, classification error decreases and tends to converge
to a fixed value (in agreement with [5]), but we can also
see that the error is usually larger at very small ensemble
sizes, as compared to the error of the individual classifier.

We can again observe that, in most cases, bagging is able
to improve the performance of CART and NNET, but that
is not significantly so, or at all, for DLDA, LDA, and 3NN.
More importantly, we can see that the improvement on the
performance of CART and NNET is not sufficient to beat the
performance of single DLDA, LDA, or 3NN classifiers (with
the exception of the prostate cancer data with RELIEF feature
selection, which we comment on below).

As we can see in Figures 1–3, the breast cancer gene-
expression data produces linear features that favor single
DLDA and LDA classifiers (the latter do not perform so well
at n = 20, due to the difficulty of estimating the entire
covariance matrix at this sample size, which affects DLDA
less), while the lung cancer gene-expression data produce
nonlinear features, in which case, according to the results, the
best option overall is to use a single 3NN classifier, followed
closely by a bagged NNET in t-test feature selection and a
bagged CART in RELIEF feature selection. The case of the
prostate cancer proteomic data is peculiar in that it presents
the only case where the best option was not a DLDA, LDA,
or 3NN classifier, but in fact a single CART classifier, namely,
the case n = 20 (with either p = 2 or p = 5) for RELIEF
feature selection (the results for t-test feature selection, on
the other hand, are very similar to the ones obtained for
the lung cancer data set). Note that, in this case, the best
performance is achieved by a single CART classifier, rather
than the ensemble CART scheme. We also point out that
the classification errors obtained with t-test feature selection
are smaller than the ones obtained with RELIEF feature
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Figure 1: Expected classification error as a function of number of classifiers in the ensemble for selected experiments with the breast cancer
gene expression data (full results available on the companion website). The error of a single classifier is indicated by a horizontal dashed line.
Marks indicate the values that are smaller for the ensemble classifier as compared to a single classifier at a 99% significance level, according
to the one-tailed paired t-test.

selection, indicating that RELIEF is not a good option in
this case due to the very small-sample size (in fact, there is
evidence that t-test filter-based feature selection may be the
method of choice in small-sample cases [24]), in the case

n = 40, the difference between 3NN and CART essentially
disappears. It is also interesting that in the case n = 20
and p = 5, for RELIEF feature selection, bagging is able to
improve the performance of LDA by a good margin in the
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Figure 2: Expected classification error as a function of number of classifiers in the ensemble for selected experiments with the lung cancer
gene expression data (full results available on the companion website). The error of a single classifier is indicated by a horizontal dashed line.
Marks indicate the values that are smaller for the ensemble classifier as compared to a single classifier at a 99% significance level, according
to the one-tailed paired t-test.

case of the prostate cancer data. This is due to the fact that the
combination of LDA and RELIEF feature selection produce
an unstable overfitting classification rule at this acute small-
sample scenario.

The results obtained with t-test feature selection are
consistent across all data sets. When using RELIEF feature
selection, there is a degree of contrast between the results for
the prostate cancer protein-abundance data set and the ones
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Figure 3: Expected classification error as a function of number of classifiers in the ensemble for selected experiments with the prostate
cancer protein abundance data (full results available on the companion website). The error of a single classifier is indicated by a horizontal
dashed line. Marks indicate the values that are smaller for the ensemble classifier as compared to a single classifier at a 99% significance level,
according to the one-tailed paired t-test.

for the gene-expression data sets, which may be attributed to
the differences in technology as well as the fact that we do not
employ baseline subtraction for the proteomics data in order
to achieve better classification rates.

We remark that results are not expected to change much
if ensemble sizes are increased further (beyond m = 51), as
can be seen from convergence of the expected classification
error curves in Figures 1–3.
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4. Conclusion

In this paper we conducted a detailed empirical study of the
ensemble approach to classification of small-sample genomic
and proteomic data. The main performance issue is not
whether the ensemble scheme improves the classification
error of an unstable overfitting classifier (e.g., CART, NNET),
or whether its classification error converges to a fixed
limit; but rather whether the ensemble scheme will improve
performance of the unstable overfitting classifier sufficiently
to beat the performance of single stable, nonoverfitting
classifiers (e.g., DLDA, LDA, and 3NN). We observed that
this never was the case for any of the data sets and experi-
mental conditions considered here, except in the case of the
proteomics data set with RELIEF feature selection in acute
small-sample cases, when nevertheless the performance of
a single unstable overfitting classifier (in this case, CART)
was better or comparable to the corresponding ensemble
classifier. We observed that in most cases bagging does a good
(sometimes, admirable) job of improving the performance
of unstable overfitting classifiers, but that improvement
was not enough to beat the performance of single stable
nonoverfitting classifiers.

The main message to be gleaned from this study by
practitioners is that the use of bagging in classification
of small-sample genomics and proteomics data increases
computational cost, but is not likely to improve overall
classification accuracy over other, more simple, approaches.
The solution we recommend is to use simple classification
rules and avoid bagging in these scenarios. It is important to
stress that we do not give a definitive recommendation on the
use of the random forest method for small-sample genomics
and proteomics data; however, we do think that this study
does provide a step in that direction, since the random forest
method depends partly, if not significantly, for its success on
the effectiveness of bagging. Further research is needed to
investigate this question.
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