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The inference of genetic regulatory networks from global measurements of gene expressions is an important problem in
computational biology. Recent studies suggest that such dynamical molecular systems are poised at a critical phase transition
between an ordered and a disordered phase, affording the ability to balance stability and adaptability while coordinating complex
macroscopic behavior. We investigate whether incorporating this dynamical system-wide property as an assumption in the
inference process is beneficial in terms of reducing the inference error of the designed network. Using Boolean networks, for which
there are well-defined notions of ordered, critical, and chaotic dynamical regimes as well as well-studied inference procedures, we
analyze the expected inference error relative to deviations in the networks’ dynamical regimes from the assumption of criticality. We
demonstrate that taking criticality into account via a penalty term in the inference procedure improves the accuracy of prediction
both in terms of state transitions and network wiring, particularly for small sample sizes.
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1. Introduction

The execution of various developmental and physiological
processes in cells is carried out by complex biomolecular
systems. Such systems are dynamic in that they are able
to change states in response to environmental cues and
exhibit multiple steady states, which define different cellular
functional states or cell types.

The massively parallel dynamics of complex molecular
networks furnish the cell with the ability to process informa-
tion from its environment and mount appropriate responses.
To be able to stably execute cellular functions in a variable
environment while being responsive to specific changes
in the environment, such as the activation of immune
cells upon exposure to pathogens or their components,
the cell needs to strike a balance between robustness and
adaptability.

Theoretical considerations and computational studies
suggest that many types of complex dynamical systems can
indeed strike such an optimal balance, under a variety of

criteria, when they are operating close to a critical phase
transition between an ordered and a disordered dynamical
regime [1–3]. There is also accumulating evidence that living
systems, as manifestations of their underlying networks of
molecular interactions, are poised at the critical boundary
between an organized and a disorganized state, indicating
that cellular information processing is optimal in the critical
regime, affording the cell with the ability to exhibit complex
coordinated macroscopic behavior [4–8]. Studies of human
brain oscillations [9], computer network traffic and the
Internet [10, 11], financial markets [12], forest fires [13],
neuronal networks supporting our senses [14], and biologi-
cal macroevolution have also revealed critical dynamics [15].

A key goal in systems biology research is to character-
ize the molecular mechanisms governing specific cellular
behaviors and processes. This typically entails selecting a
model class for representing the system structure and state
dynamics, followed by the application of computational
or statistical inference procedures for revealing the model
structure from measurement data [16]. Multiple types of
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data can be potentially used for elucidating the structure of
molecular networks, such as transcriptional regulatory net-
works, including genome wide transcriptional profiling with
DNA microarrays or other high-throughput technologies,
chromatin immunoprecipitation-on-chip (ChIP-on-chip)
for identifying DNA sequences occupied by specific DNA
binding proteins, computational predictions of transcription
factor binding sites based on promoter sequence analysis,
and other sources of evidence for molecular interactions
[17, 18]. The inference of genetic networks is particularly
challenging in the face of small sample sizes, particularly
because the number of variables in the system (e.g., genes)
typically greatly outnumbers the number of observations.
Thus, estimates of the errors of a given model, which
themselves are determined from the measurement data, can
be highly variable and untrustworthy.

Any prior knowledge about the network structure, archi-
tecture, or dynamical rules is likely to improve the accuracy
of the inference, especially in a small sample size scenario.
If biological networks are indeed critical, a key question is
whether this knowledge can be used to improve the inference
of network structure and dynamics from measurements. We
investigated this question using the class of Boolean networks
as models of genetic regulatory networks.

Boolean networks and the more general class of proba-
bilistic Boolean networks are popular approaches for mod-
eling genetic networks, as these model classes capture mul-
tivariate nonlinear relationships between the elements of the
system and are capable of exhibiting complex dynamics [5,
16, 19–21]. Boolean network models have been constructed
for a number of biomolecular systems, including the yeast
cell cycle [22, 23], mammalian cell cycle [24], Drosophila
segment polarity network [25], regulatory networks of E.
coli metabolism [26], and Arabidopsis flower morphogenesis
[27–29].

At the same time, these model classes have been studied
extensively regarding the relationships between their struc-
ture and dynamics. Particularly in the case of Boolean net-
works, dynamical phase transitions from the ordered to the
disordered regime and the critical phase transition boundary
have been characterized analytically for random ensembles
of networks [30–34]. This makes these models attractive
for investigating the relationships between structure and
dynamics [35, 36].

In particular, the so-called average sensitivity was shown
to be an order parameter for Boolean networks [31]. The
average sensitivity, which can be computed directly from
the Boolean functions specifying the update rules (i.e.,
state transitions) of the network, measures the average
response of the system to a minimal transient perturbation
and is equivalent to the Lyapunov exponent [33]. There
have been a number of approaches for inferring Boolean
and probabilistic Boolean networks from gene expression
measurement data [20, 21, 37–44].

We address the relationship between the dynamical
regime of a network, as measured by the average sensitivity,
and the inference of the network from data. We study
whether the assumption of criticality, embedded in the
inference objective function as a penalty term, improves the

inference of Boolean network models. We find that for small
sample sizes the assumption is beneficial, while for large
sample sizes, the performance gain decreases gradually with
increasing sample size. This is the kind of behavior that one
hopes for when using penalty terms.

This paper is organized as follows. In Section 2, we give
a brief definition of Boolean Networks and the concept of
sensitivity. Then in Section 3, three measures used in this
paper to evaluate the performance of the predicted networks
are introduced, and a theoretical analysis of the relationship
between the expected error and the sensitivity deviation is
presented. Based on this analysis, an objective function is
proposed to be used for the inference process in Section 4,
while the simulation results are presented in Section 5.

2. Background and Definitions

2.1. Boolean Networks

A Boolean network G(V ,F) is defined by a set of nodes
V = {x1, . . . , xn}, xi ∈ {0, 1} and a set of Boolean functions
F = { f1, . . . , fn}, fi : {0, 1}ki→{0, 1}. Each node xi represents
the expression state of the gene xi, where xi = 0 means
that the gene is OFF, and xi = 1 means it is ON. Each
Boolean function fi(xi1 , . . . , xiki ) with ki specific input nodes
is assigned to node xi and is used to update its value. Under
the synchronous updating scheme, all genes are updated
simultaneously according to their corresponding update
functions. The network’s state at time t is represented by a
vector x(t) = (x1(t), . . . , xn(t)) and, in the absence of noise,
the system transitions from state to state in a deterministic
manner.

2.2. Sensitivity

The activity of gene xj in function fi is defined as

α
fi
j =

1
2ki

∑

x∈{0,1}ki

∂ fi(x)
∂xj

, (1)

where ∂ fi(x)/∂xj = fi(x( j,0)) ⊕ fi(x( j,1)) is the partial deri-
vative of fi with respect to xj , ⊕ is addition modulo 2, and
x( j,l) = (x1, . . . , xj−1, l, xj+1, . . . , xki), l = 0, 1 [31]. Note that
the activity is equivalent to the expectation of the partial
derivative with respect to the uniform distribution. Since the
partial derivative is itself a Boolean function, its expectation
is equal to the probability that a change in the jth input
causes a change in the output of the function, and hence
the activity is a number between zero and one. The average
sensitivity of a function fi equals the sum of the activities of
its input variables:

s fi =
ki∑

j=1

α
fi
j . (2)

In the context of random Boolean networks (RBNs), which
are frequently used to study dynamics of regulatory network
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Figure 1: Histograms of the true error in state transition and in sensitivity and the ROC distribution for the 1000 random BNs under sample
size 10.

models, another important parameter is the bias p of a
function f , which is defined to be the probability that the
function takes on the value 1. A random Boolean function
with bias p can be generated by flipping a p-biased coin 2k

times and filling in the truth table. In other words, the truth
table is a realization of 2k independent Bernoulli (p) random
variables. For a function fi with bias pi, the expectation of its
average sensitivity is

E
[
s fi
] =

ki∑

j=1

E
[
α
fi
j

] = 2ki pi
(
1− pi

)
. (3)

The sensitivity of a Boolean network is then defined as

S = 1
n

n∑

i=1

E
[
s fi
]
. (4)

Sensitivity is in fact a global dynamical parameter that
captures how a one-bit perturbation spreads throughout
the network and its expectation under the random Boolean
network model is equivalent to the well-known phase
transition curve [31].

3. Error Analysis

3.1. PerformanceMeasures

There are several ways to measure the performance of an
inference method by comparing the state transitions, wiring,
or sensitivities with the original network. In this paper, we
will use three measures that are described below.

3.1.1. The State Transition Error

This quantity generally shows the fraction of outputs that are
incorrectly predicted, and it can be defined as

ε = 1
n

n∑

i=1

1
2n

∑

x∈{0,1}n

(
fi(x)⊕ f ′i (x)

) = 1
n

n∑

i=1

εi, (5)

where εi denotes the normalized error of the predicted
function f ′. Additionally, fi and f ′ are extended such that
they are functions of all the variables (instead of ki variables)
by adding fictitious (i.e., dummy) variables.
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Figure 2: Histograms of the true error in state transition and in sensitivity and the ROC distribution for the 1000 random BNs under sample
size 15.

3.1.2. The Receiver Operating
Characteristic (ROC)

This measurement has been widely used in classification
problems. An ROC space is defined by the false positive ratio
(FPR) and the true positive ratio (TPR) plotted on the x-
and y-axes, respectively, which depicts the relative tradeoffs
between true positives and false positives. The FPR and TPR
are defined as

FPR = FP

N
, TPR = TP

P
, (6)

where TP and FP represent true positive and false positive
instances, respectively, while P and N represent the total
positive and negative instances, respectively. We will use
the ROC distributions to evaluate the accuracy of “wiring”
(i.e., the specific input nodes assigned to each node) for the
inferred network.

3.1.3. The Sensitivity Error

The sensitivity error measures the deviation in the sensitivity
of a predicted network and is defined as

εs = S′ − S

S
= ΔS

S
, (7)

where S′ is the sensitivity of the predicted network.

3.2. Analysis of Expected Error

All Boolean networks with a fixed number of genes n can be
grouped into different families according to the network’s
sensitivity. Assuming that G(V ,F) and G′(V ,F′) are the
original network and another random network, S and S′

are their sensitivities, respectively, and P = {p1, . . . , pn} and
P′ = {p′1, . . . , p′n} are the biases with which functions fi ∈ F
and f ′i ∈ F′ are generated. Let p′i = pi+Δpi. The expectation
of the state transition error between them can be written as

E(ε) = E

(
1
n

n∑

i=1

εi

)

= 1
n

n∑

i=1

E
(
εi
)

= 1
n

n∑

i=1

[
pi
(
1− p′i

)
+ p′i

(
1− pi

)]

= 1
n

n∑

i=1

(
pi + p′i − 2pi p′i

)

= 1
n

[ n∑

i=1

2pi
(
1− pi

)
+

n∑

i=1

(
1− 2pi

)
Δpi

]
.

(8)



EURASIP Journal on Bioinformatics and Systems Biology 5

0.250.20.150.10.050

True state transition error (noise = 0)

Best-fit method
New method

0

50

100

150

200

250

300

350
N

u
m

be
rs

0.70.50.30.1−0.1

True sensitivity error (noise = 0)

Best-fit method
New method

0
100
200
300
400
500
600
700
800
900

1000

N
u

m
be

rs

0.40.30.20.10

FPR (noise = 0)

Best-fit method
New method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

T
P

R

(a)

0.30.250.20.150.10.050

True state transition error (noise = 0.05)

Best-fit method
New method

0

50

100

150

200

250

300

N
u

m
be

rs

0.80.60.40.20−0.2

True sensitivity error (noise = 0.05)

Best-fit method
New method

0

100

200

300

400

500

600

700

800

N
u

m
be

rs

0.40.30.20.10

FPR (noise = 0.05)

Best-fit method
New method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

T
P

R

(b)

Figure 3: Histograms of the true error in state transition and in sensitivity and the ROC distribution for the 1000 random BNs under sample
size 20.

Using the relationship between sensitivity and bias in
Section 2.2, we have

E
(
Δsi
)
/2ki =

E
(
s f

′
i − s fi

)

2ki

= p′i − pi −
((
p′i
)2 − p2

i

)

= (1− 2pi
)
Δpi −

(
Δpi

)2
.

(9)

Then,

E(ε) = 1
n

[ n∑

i=1

E
(
s fi /ki

)
+

n∑

i=1

E
(
Δs fi /

(
2ki
))

+
n∑

i=1

(
Δpi

)2
]
.

(10)

If we further assume that both networks’ connectivity is
constant, K = ki (i = 1, . . . ,n), then

E(ε) = 1
nK

n∑

i=1

E
(
s fi
)

+
1

2nK

n∑

i=1

E
(
Δs fi

)
+

1
n

n∑

i=1

Δp2
i

= S

K
+
ΔS

2K
+

1
n

n∑

i=1

Δp2
i .

(11)

This means that the expectation of the state transition error
E(ε) generally depends on the original network’s connectivity

K , its sensitivity S, the sensitivity deviation ΔS, and the mean
quadratic terms of the bias deviation (1/n)

∑n
i=1Δp

2
i .

(1) If Δpi = 0, then ΔS will be 0. In this case, each
function f ′i keeps the same bias with that of the original
network, and then

E(ε) = S

K
. (12)

(2) If Δpi /=0 and ΔS is 0, the predicted network still stays
in the same sensitivity class, and

E(ε) = S

K
+

1
n

n∑

i=1

Δp2
i . (13)

(3) If (1/n)
∑n

i=1Δp
2
i is relatively small compared with

ΔS/2K , we can treat it as a constant c. Then,

E(ε) = S

K
+
ΔS

2K
+ c. (14)

In this case, E(ε) will have a linear relationship with ΔS.
This indicates that ΔS > 0 will surely introduce additional
error ΔS/2K . Our simulations indicate that the inference
method we use (best-fit, see below) yields a network with
ΔS > 0 in most cases.
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Figure 4: Histograms of the true error in state transition and in sensitivity and the ROC distribution for the 1000 random BNs under sample
size 30.

4. InferenceMethod

To infer a Boolean network, for each target node we need
to apply some optimization criterion to each set of input
variables and Boolean function on those input variables and
then choose the variable set and corresponding Boolean
function that minimizes the objective function. The first
step in our proposed procedure is to find variable sets and
Boolean functions that provide good target prediction. Based
upon time-series observations, given a target node Xi(t + 1)
and an input-node vector X̃i(t) = (Xi1 (t) . . . ,Xiki

(t)), the best

predictor, fi, minimizes the error, εi( f ) = Pr[ f (X̃i(t)) /=Xi(t+
1)], among all possible predictors f . Finding the best
predictor for a given node means finding the minimal
error among all Boolean functions over all input-variable
combinations. We consider three variable combinations.
Since we will optimize via an objective function containing
a sensitivity penalty term, we will select a collection of input-
variable sets and select the minimal-error Boolean function
over each input-variable set. This is accomplished by using
the plugin (resubstitution) estimate of the error εi( f ), which
is given by the number of times f (X̃i(t)) /=Xi(t + 1) in the
data divided by the number of times, the pair ((X̃i(t),Xi(t +
1)) is observed in the data. This procedure is equivalent
to the best-fit extension method [45]. We make use of an

efficient algorithm for solving the best-fit extension problem
and finding all functions having error smaller than a given
threshold [37]. We then select the four best variable sets
and corresponding Boolean functions as candidates. The
limitation of four candidates is based on computational
considerations; in principle, there is no such limitation.

Because we have a small data sample, if we were to
use the resubstitution error estimates employed for variable
selection as error estimates for the best Boolean functions, we
would expect optimistic estimates. Hence, for each selected
variable set, we estimate the error of the corresponding
Boolean function via the .632 bootstrap [46, 47]. A bootstrap
sample consists of N equally likely draws with replace-
ment from the original sample consisting of N data pairs
(X̃i(t),Xi(t + 1)). For the zero-bootstrap estimator, ε̂bN , the
function is designed on the bootstrap sample and tested on
the points left out, this is done repeatedly, and the bootstrap
estimate is the average error made on the left-out points. ε̂bN
tends to be a high-biased estimator of the true error, since the
number of points available for design is on average only 0.632
N . The .632 bootstrap estimator attempts to correct this bias
via a weighted average,

ε̂b632
N = 0.368εres

N + 0.632ε̂bN , (15)

where εres
N is the original resubstitution estimate.
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Figure 5: Histograms of the true error in state transition and in sensitivity and the ROC distribution for the 1000 random BNs under sample
size 40.

We summarize the procedure as follows.
(1) For each three-variable set V , do the following.

(i) Compute the resubstitution errors of all Boolean
functions using the full sample data set.

(ii) Choose the Boolean function, fV , possessing the
lowest resubstitution error as the corresponding
function for V .

(iii) Bootstrap the sample and compute the zero-boot-
strap error estimate for fV .

(iv) Compute the .632 bootstrap error estimate for fV
using the computed resubstitution and zero-boot-
strap estimates.

(2) Select the four input-variable sets whose correspond-
ing functions possess the lowest .632 bootstrap estimates.

This procedure is the same as the one used in [48] to
evaluate the impact of different error estimators on feature-
set ranking. It was demonstrated there that the bootstrap
tends to outperform cross-validation methods in choosing
good feature sets. While it was also observed that bolstering
tends to be slightly better than bootstrap, bolstering cannot
be applied in discrete settings, so it is not a viable option in
our context.

Motivated by the analysis in Section 3, we refine the infer-
ence process by incorporating the sensitivity. We construct an
objective function

Fobj = ε′ +
∣∣εs
∣∣, (16)

where ε′ represents the bootstrap-estimated error of the
previously selected Boolean function and εs is the sensitivity
error. The first item represents the prediction error, while
the second represents the “structural error” associated with
general network dynamics. Our hypothesis is that a better
inference should have a small error in both state transition
and sensitivity, and consequently, the value of its objective
function Fobj should be minimal. Of the four input-variable
sets selected via prediction error for a target node, we use
the one with minimal objective function Fobj for network
construction.

5. Simulation Results

All simulations are performed for random Boolean networks
with n = 10 and K = 3. For a given BN, we randomly
generate m pairs of input and output states. We also consider
the effect of noise, with 5% noise added to the output states
of each gene by flipping its value with probability 0.05.
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Figure 6: Mean state transition and sensitivity error for sample sizes ranging from 10 to 40, computed with zero noise and 5% noise.

From the perspective of network inference, performance
is best characterized via a distance function between the
ground-truth network and the inferred network, more
specifically, by the expected distance between the ground-
truth and inferred network as estimated by applying the
inference to a random sample of ground-truth networks
[49]. In our case, we have chosen the normalized state-
transition error as the distance between the networks.

First, we investigate the performance of the new
method on networks with different sensitivities, S =
0.8, 0.9, 1.0, 1.2, 1.4, on sample sizes ranging from 10 to
40. There are total of 200 networks for each value of
the sensitivity. The left columns of Figures 1–5 are the
histograms of the distribution of the true state-transition

error (Section 3.1.1) for both the traditional best-fit method
(combined with .632 bootstrap) and the new proposed
method. They show that the proposed method reduces this
error dramatically in small sample situations. As sample size
increases, the performance of both methods becomes closer.
The middle columns of Figures 1–5 are the histograms of the
distribution of the sensitivity error (Section 3.1.3). As can be
seen, the best-fit method usually ends up with a network with
larger sensitivity in small sample cases, while the proposed
method can find a network operating in the same or nearby
dynamic regime. The right columns of Figures 1–5 are the
ROC distributions of both methods (Section 3.1.2). The
proposed method has approximately the same TPR as the
best-fit method but with a lower FPR. This means that the
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Figure 7: Mean state transition error of different sensitivity deviation for sample sizes ranging from 10 to 70, computed with zero noise and
5% noise.
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Figure 8: The distribution of ROC with sensitivity deviation from 0.9 to 1.1 for sample sizes 10, 15, and 20, computed with zero noise and
5% noise.
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recovered connections will have higher reliability. Figure 6
shows the mean error in state transition and sensitivity under
different samples sizes, for zero noise and 5% noise.

In practice, we do not know the network sensitivity, so
that the assumed value in the inference procedure may not
agree with the actual value. Hence, the inference procedure
must be robust to this difference. Under the assumption of
criticality for living systems, it is natural to set S = 1 in
the inference procedure. Moreover, assuming that a living
system remains near the border between order and disorder,
the true sensitivity of gene regulatory networks will remain
close to 1 under the Boolean formalism. Thus, to investigate
robustness, we generated 1000 networks with sensitivities
S = 0.9, 0.95, 1.0, 1.05, 1.1, and then inferred them using
S = 1 with the proposed method. The mean state transition
errors of both methods are shown in Figure 7.

When the actual sensitivity is 1, the method helps for
small samples and the performances become close for large
samples, analogous to Figure 6. When the true network
deviates from the modelling assumption, S = 1, the proposed
method helps for small samples and results in some loss of
performance for large samples. This kind of behavior is what
one would expect with an objective function that augments
the error. In effect, the sensitivity is a penalty term in the
objective function that is there to impose constraint on the
optimization. In our case, when the true sensitivity is not
equal to 1, the sensitivity constraint S = 1 yields smaller
sensitivity error than the best-fit method in small sample
situations, while the sensitivity error of the best-fit method is
smaller for large samples. In sum, the constraint is beneficial
for small samples.

Finally, the performance of the new method with regard
to wiring for small sensitivity deviation is presented in
Figure 8. It shows that the new method can achieve the same
TPR with a lower FPR under a small sensitivity deviation in
small sample situations.

6. Conclusions

Sensitivity is a global structural parameter of a network
which captures the network’s operating dynamic behavior:
ordered, critical, or chaotic. Recent evidence suggests that
living systems operate at the critical phase transition between
ordered and chaotic regimes. In this paper, we have proposed
a method to use this dynamic information to improve the
inference of Boolean networks from observations of input-
output relationships. First, we have analyzed the relationship
between the expectation of the error and the deviation of
sensitivity, showing that these quantities are strongly corre-
lated with each other. Based on this observation, an objective
function is proposed to refine the inference approach based
on the best-fit method. The simulation results demonstrate
that the proposed method can improve the predicted results
both in terms of state transitions, sensitivity, and network
wiring. The improvement is particularly evident in small
sample size settings. As the sample size increases, the
performance of both methods becomes similar. In practice,
where one does not know the sensitivity of the true network,
we have assumed it to be 1, the critical value, and investigated

inference performance relative to its robustness to the true
sensitivity deviating from 1. For small samples, the kind
we are interested in when using such a penalty approach,
the proposed method continues to outperform the best-fit
method.

For practical applications, one can apply an optimization
strategy, such as genetic algorithms, to attain suboptimal
solutions instead of the brute force searching strategy used
in this paper. As the final chosen function for each gene gen-
erally lies within the top three candidates in our simulations,
one can just select from a few top candidate functions for

each gene instead of using all of the possible
(n
k

)
candidates.

Finally, it should be noted that the ideas presented here could
also be incorporated into other inference methods, such as
the ones in [40, 41].
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