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It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from re-
peatedmeasurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady
state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite
dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models
are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general
definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point
system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when
certain nonlinear systems (monomial dynamical systems over finite fields) are fixed point systems. We also show how it is possible
to determine in polynomial time when an ordinary linear system (defined over a finite field) is a fixed point system. We conclude
with a necessary condition for a univariate finite dynamical system to be a fixed point system.
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1. INTRODUCTION

Finite dynamical systems are dynamical systems on fi-
nite sets. Examples include cellular automata and Boolean
networks, (e.g., [1]) with applications in many areas of
science and engineering (e.g., [2, 3]), and more recently
in computational biology (e.g., [4–6]). A common ques-
tion in all of these applications is how to analyze the dy-
namics of the models without enumerating all state tran-
sitions. This paper presents partial solutions to this prob-
lem.

Because of technological advances such as DNAmicroar-
rays, it is possible to measure gene transcripts from a large
number of genes. It is desirable to have efficient mathemat-
ical methods to extract information about regulatory iter-
ations between genes from repeated measurements of gene
transcript concentrations.

One piece of information about regulatory iterations of
interest is when the dynamics reaches a steady state. In the
words of Fuller (see [7]): “this paradigm closely parallels
the goal of professionals who aim to understand the flow of
molecular events during the progression of an illness and to

predict how the disease will develop and how the patient will
respond to certain therapies.”

The work of Fuller et al. [7] serves as an example. When
the gene expression profile of human brain tumors was an-
alyzed, these were divided into three classes—high grade,
medium grade, and low grade. A key gene expression event
was identified, which was a high expression of insulin-like
growth factor binding protein 2 (IGFBP2) occurring only
in high-grade brain tumors. It can be assumed that gene
expression events were initiated at some stages in low-level
tumors and may have led to the state when IGFBP2 is ac-
tivated. The activation of IGFBP2 can be understood to
be a steady state. If we model the kinetics and construct
a model that reconstructs the genetic regulatory network
that activates during the brain tumor process, then we may
be able to predict the convergence of events that lead to
the activation of IGFBP2. In the same way, we also want
to know what happens in the next step following the ac-
tivation of IGFBP2. Our goal is to develop tools that will
enable this type of analysis in the case of modeling gene
regulatory networks by means of discrete dynamical sys-
tems.
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The use of polynomial dynamical systems to model
biological phenomena, in particular gene regulatory net-
works, have proved to be as valid as continuous models.
Laubenbacher and Stigler (see [6]) point out, for exam-
ple, that most ordinary differential equations models can-
not be solved analytically and that numerical solutions of
such time-continuous systems necessitate approximations by
time-discrete systems, so that ultimately, the two types of
models are not that different.

Once a gene regulatory network is modeled, in our case
by finite fields, or by finitely generated modules, we obtain a
finite dynamical system. Our goal is to determine if the dy-
namical system represents a steady-state gene regulatory net-
work (i.e., if every state eventually enters a steady state). This
is a crucial task. Shmulevich et al. (see [8]) have shown that
the steady-state distribution is necessary in order to compute
the long term influence that is a measure of gene impact over
other genes.

The rest of the paper is organized as follows. In Section 2
we give some basic definitions and facts about finite dynam-
ical systems and their associated state spaces. In Section 3
we discuss multivariate and univariate finite field models for
genetic networks and show that they are equivalent. Each
of the models can be converted to the other by a discrete
Fourier transform. Section 4 is devoted to fixed point sys-
tems. We give a new definition of linear finite dynamical sys-
tems and give necessary and sufficient conditions for such a
system to be a fixed point system. We review results concern-
ing monomial fixed point systems and show how our results
concerning linear systems can be used to determine when
a monomial finite dynamical system over an arbitrary finite
field is a fixed point system.We show how fixed points can be
determined in the univariable model by solving a polynomial
equation over a finite field and we give a necessary condition
for a finite dynamical system to be a fixed point system. Fi-
nally, in Section 5 we discuss some implementation issues.

2. PRELIMINARIES

A finite dynamical system (fds) is an ordered pair (X , f )
where X is a finite set and f is a function that maps X into
itself, that is, f : X → X . The state space of an fds (X , f ) is a
digraph (i.e., directed graph) whose nodes are labeled by the
elements of X and whose edges consist of all ordered pairs
(x, y) ∈ X × X such that f (x) = y. We say that two finite
dynamical systems are isomorphic if there exists a graph iso-
morphism between their state spaces.

Let G = (V ,E) be a digraph. A path in G of the form
(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1), where v1, v2, . . . , vn are
distinct members ofV is a cycle of length n. We define a tree to
be a digraph T = (V ,E) which has a unique node v0, called
the root of T , such that (a) (v0, v0) ∈ E, (b) for any node v �=
v0, there is a path from v to v0, (c) T has no “semicycles” (i.e.,
alternate sequence of nodes and edges v1, x1, v2, . . . , xn, vn+1,
n �= 0, where v1 = vn+1 and each xi is (vi, vi+1 or vi+1, vi))
other than the trivial one (v0, (v0, v0), v0). (Such a tree with
the edge (v0, v0) deleted is sometimes called an “in-tree” with
“sink” v0.)

Let T be a tree, let nT = ⋃n
i=1 Ti be the union of n

copies T1,T2, . . . ,Tn of T , and let ri be the root of Ti. De-
fine T(n) to be the digraph obtained from nT by deleting the
edges (ri, ri), i = 1, 2, . . . ,n, and adjoining the edges (ri, r j),
i, j = 1, 2, . . . ,n, where j = i + 1 mod n. We call T(n) an n-
cycled tree. Note that by definition, every tree is an n-cycled
tree with n = 1. Note also that by definition, a digraph
Tr = ({r}, {r, r}) consisting of a single trivial cycle is a tree
and hence every cycle of length n is isomorphic to nTr and
hence is an n-cycled tree.

The product of two digraphs G1 = (V1,E1) and G2 =
(V2,E2), denoted G1 × G2, is the digraph G = (V ,E) where
V = V1 × V2 (the Cartesian product of V1 by V2) and E =
{((x1, y1), (x2, y2)) ∈ V × V : (x1, x2) ∈ E1 and (y1, y2) ∈
E2}. The following facts follow easily from the definitions.
Lemmas 1, 3, and 4 have been noted in [9].

Lemma 1. The state space of an fds is the disjoint union of cy-
cled trees.

Of special interest are those fds whose state space consists
entirely of trees. Such an fds is called a fixed point system (fps).

For any finite set X we call f : X → X nilpotent if there
exists a unique x0 ∈ X such that f k(X) = x0 for some posi-
tive integer k.

Lemma 2. The state space of an fds (X , f ) is a tree if and only
if f is nilpotent. Hence (X , f ) is an fps if f is nilpotent.

Proof. Suppose that the state space (X , f ) is a tree with root
x0 and height k. Then f k(x) = x0 for all x ∈ X and x0 is
the only node with this property. Hence f is nilpotent. Con-
versely, if f is nilpotent and f k(X) = x0, then by Lemma 1,
the state space consists of an n-cycled tree and since x0 is
unique, n = 1.

Example 1. Consider the fds (F3
2 , f ), where f : F3

2 → F3
2 is

defined by f (x, y, z) = (y, 0, x) and F2 is the binary field. In
this case f is a nilpotent function. The state space of (F3

2 , f )
is a tree whose state space is shown in Figure 1.

Lemma 3. The state space of an fds (X , f ) is the union of cycles
if and only if f is one-to-one.

Lemma 4. The product of a tree and a cycle of length l is a
cycled tree whose cycle has length l.

3. FINITE FIELDMODELS

A finite dynamical system constitutes a very natural discrete
model for regulatory processes (see [10]), in particular ge-
netic networks. Experimental data can be discretized into a
finite set X of expression levels. A network consisting of n
genes is then represented by an fds (Xn, f ). The dynamics of
the network is described by a discrete time series

f
(
s0
) = s1, f

(
s1
) = s2, . . . , f

(
sk−2

) = sk−1. (1)

Special cases of the finite dynamical model are the
Booleanmodel and finite fieldmodels. In the Booleanmodel,



Dorothy Bollman et al. 3

0 1 0 0 1 1 1 1 0 1 1 1

1 0 0 1 0 1

0 0 1

0 0 0

Figure 1: State space of (F3
2 , f ), where f (x, y, z) = (y, 0, x) over F2.

either a gene can affect another gene or not. In a finite field
model, one is able to capture graded differences in gene
expression. A finite field model can be considered as a gener-
alization of the Boolean model since each Boolean operation
can be expressed in terms of the sum and product in Z2. In
particular,

x ∧ y = x · y,
x ∨ y = x + y + x · y,

x̃ = x + 1.

(2)

Two types of finite field models have emerged, the
multivariate model [6] and the univariable model [11]. The
multivariate model is given by the fds (Fn

q , f ), where F
n
q rep-

resents the set of n-tuples over the finite field Fq with q el-
ements. Each coordinate function fi gives the next state of
gene i, given the states of the other genes. The univariate
model is given by the fds (Fqn , f ). In this case, each value of
f represents the next states of the n genes, given the present
states.

The two types of finite field models can be considered
equivalent in the following sense.

Definition 1. An fds (X , f ) is equivalent to an fds (Y , g) if
there is an epimorphism φ : X → Y such that φ ◦ f = g ◦ φ.

It is easy to see that if two fds’s are equivalent, then their
state spaces are the same up to isomorphism. We can show
that for any n-dimensional dynamical system (Fn

q , f ) there
is an equivalent one-dimensional system (Fqn , g). To see this,
consider a primitive element α of Fqn , that is, a generator of
the multiplicative group of Fqn − {0}. Then there is a natural
correspondence between Fn

q and Fqn , given by

φα
(
x0, . . . , xn−1

) = x0 + x1α + x2α
2 + · · · + xn−1αn−1. (3)

Since for each a ∈ Fqn there exists unique yi ∈ Fq such
that a = y0 + y1α + y2α2 + · · · + yn−1αn−1 we can define
g : Fqn → Fqn as g(a) = (φα ◦ f )(y0, . . . , yn−1). Notice then
that g ◦ φα = φα ◦ f and therefore the dynamical systems g
and f are equivalent.

One important consideration in choosing an appropriate
finite field model for a genetic network is the complexity of
the needed computational tasks. For example, the evaluation

of a polynomial in n variables over Fq, q prime, can be done
with O(qn/n) operations (see [12]) and hence, evaluating f
in all n of its coordinates is O(qn), the same number of oper-
ations needed for the evaluation of a univariate polynomial
over Fqn . However, the complexity of the comparison of two
values in Fn

q is O(n), whereas the complexity of the compar-
ison of two values in Fqn , represented as described below, is
O(1).

Arithmetic in Fn
q , q prime, is integer arithmetic mod-

ulo q. Arithmetic in Fqn is efficiently performed by table
lookup methods, as shown below. Nonzero elements of Fqn
are represented by powers of a primitive element α. Mul-
tiplication is then performed by adding exponents modulo
qn − 1. For addition we make use of a precomputed table of
values defined as follows. Every nonozero element of Fqn has
a unique representation in the form 1 + αi and the unique
number z(i), 0 ≤ z(i) ≤ qn − 2, such that 1 + αi = αz(i)

is called the Zech log of i. Note that for a ≤ b, αa + αb =
αa(1 + αb−a) = αa+z(b−a)mod qn−1. Addition is thus performed
by adding one exponent to the Zech log of the difference,
which is found in a precomputed table. In order to construct
a table of Zech logs for Fqn , we first need a primitive polyno-
mial, which can be found in any one of various tables (e.g.,
[13]).

Example 2. Let us construct a table of Zech logs for F32 using
the primitive polynomial x5+x2+1. Thus, we have α5 = α2+1,
where α is a root of x5 + x2 + 1. Continuing to compute the
powers and making use of this fact, we have α6 = α3 + α,
α7 = α4 + α2, α8 = α5 + α3 = α3 + α2 + 1, . . . , α31 = 1.
Now use these results to compute for each i = 1, . . . , 30, the
number z(i) such that αi + 1 = αz(i). For example, since α5 =
α2 + 1, we have α5 + 1 = α2 and so z(5) = 2, and so forth. See
Table 1.

Usually it is most convenient to choose the most appro-
priate model at the outset. However, at the cost of comput-
ing all possible values of the map, it is possible to convert one
model to the other. The rest of this section is devoted to de-
veloping such an algorithm.

Definition 2. Let F be a field and let α ∈ F be an element of
order d, that is, αd = 1 and no smaller power of α equals 1.
The discrete Fourier transform (DFT) of blocklength d over
F is defined by the matrix T = [αi j], i, j = 0, 1, . . . ,d − 1.
The inverse discrete Fourier transform is given by T−1 =
d−1[α−i j], i, j = 0, 1, . . . ,d−1, where d−1 denotes the inverse
of the field element d = 1 + 1 + · · · + 1 (d times).

It is easy to show that TT−1 = Id, where Id denotes the
d × d identity matrix (see, e.g., [14]). Now an element in
Fq, is of order d if and only if d divides q − 1. Thus, for ev-
ery finite field Fq there is a DFT over Fq with block length
q − 1 which is defined by [αi j], i, j = 0, 1, . . . , q − 2, where
α is a primitive element of Fq. We denote such a DFT by
Tq,α.

Theorem 1. Let B0 = (φα ◦ f )(0, . . . , 0) and for each i =
1, 2, . . . , qn − 1, let Bi = (φα ◦ f )(a0,i, a1,i, . . . , an−1,i) where
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Table 1: Zech Logs for F32.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

z(i) 18 5 29 10 2 27 22 20 16 4 19 23 14 13 24

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

z(i) 9 30 1 11 8 25 7 12 15 21 28 6 26 3 17

α is a primitive element of Fqn and where an−1,iαn−1 + · · · +
a1,iα + α0,i = αi−1. Then g is given by the polynomial

Aqn−1xq
n−1 + Aqn−2xq

n−2 + · · · + A1x + A0, (4)

where A0 = B0 and

⎛

⎜
⎜
⎜
⎜
⎝

Aqn−1
Aqn−2
...
A1

⎞

⎟
⎟
⎟
⎟
⎠
= −Tqn,α

⎛

⎜
⎜
⎜
⎜
⎝

B1 − A0

B2 − A0
...

Bqn−1 − A0

⎞

⎟
⎟
⎟
⎟
⎠
. (5)

Proof. For each i = 0, 1, . . . , qn − 2, we have

Bi+1 = φα
(
f
(
a0,i+1, a1,i+1, . . . , an−1,i+1

))

= g
(
φα
(
a0,i+1, a1,i+1, . . . , an−1,i+1

))

= g
(
a0,i+1 + a1,i+1α + · · · + an−1,i+1αn−1

) = g
(
αi
)
.
(6)

Now every function defined on a finite field Fqn can be ex-
pressed as a polynomial of degree not more than qn − 1.
Hence g is of the form (4) and it remains to show that the
Ai are given by (5). For this we need only to solve the follow-
ing system of equations:

g
(
αi
) =Aqn−1

(
αi
)qn−1

+ Aqn−2
(
αi
)qn−2

+ · · · + A1α
i + A0, i = 0, 1, . . . , qn − 2.

(7)

Since α is a primitive element of Fqn , we have (αi)q
n−1 = 1

and so

Bi+1 − A0 = g
(
αi
) = Aqn−1

(
αi
)qn−1

+ Aqn−2
(
αi
)qn−2

+ · · · +A1α
i, i = 0, 1, . . . , qn − 2.

(8)

Thus,

⎛

⎜
⎜
⎜
⎜
⎝

B1 − A0

B2 − A0
...

Bqn−1 − A0

⎞

⎟
⎟
⎟
⎟
⎠
= d−1T−1qn,α

⎛

⎜
⎜
⎜
⎜
⎝

Aqn−1
Aqn−2
...
A1

⎞

⎟
⎟
⎟
⎟
⎠
, (9)

where d−1 = (qn − 1)−1 = −1. The theorem then follows by
applying Tqn,α to both sides of this last equation.

We illustrate the algorithm given by Theorem 1 with an
example.

Example 3. A recent application involves the study and cre-
ation of a model for lac operon [15]. When the bacteria E.

Coli is in an environment with lactose, then the lac operon
turns on the enzymes that are needed in order to degrade
lactose. These enzymes are beta-galactisidase, Lactose Perme-
ase, and Thiogalactoside transectylase. In [15], a continuous
model is proposed that measures the rate of change in the
concentration of these enzymes as well as the concentration
of mRNA and intracellular lactose. In [16, 17], Laubenbacher
and Stigler provide a discrete model for the lac operon given
by

(
F5
2 , f

(
x1, x2, x3, x4, x5

))

= (x3, x1, x3 + x2x4 + x2x3x4,
(
1 + x2

)
x4

+ x5 +
(
1 + x2

)
x4x5, x1

)
,

(10)

where x1 represents mRNA, x2 represents beta-galactosidase,
x3 represents allolactose, x4 represents lactose, and x5 repre-
sents permease. In order to find an equivalent univariate fds
( f25 , g) we first find a primitive element α in F25 . This can
be done by finding a “primitive polynomial,” that is, an irre-
ducible polynomial of degree 5 over F2 that has a zero α in
F25 that generates the multiplicative cyclic group of F25−{0}.
Such an α can be found either by trial and error or by the use
of tables (see, e.g., [13]).

In our case, we choose α to be a zero of x5 + x2 + 2.
Next, we compute Bi, i = 0, 1, . . . , 31. By definition
B0 = φα( f (0, 0, 0, 0, 0)) = φα(0, 0, 0, 0, 0) = 0 and Bi =
φα( f (a0,i, a1,i, a2,i, a3,i, a4,i)) where αi−1 = a0,i+a1,iα+a2,iα2 +
a3,iα3 + a4,iα4 for i = 1, 2, . . . , 31.

So, for example,

B1 = φα
(
f (1, 0, 0, 0, 0)

) = φα(0, 1, 0, 0, 1)

= α + α4 = α1+z(3) = α30,

B2 = φα
(
f (0, 1, 0, 0, 0)

) = φα(0, 0, 0, 0, 0) = 0.

(11)

Continuing we find that [B1,B2, . . . ,B31] = [α30, 0,α5,α3,α3,
α26,α2,α8,α15,α20,α9,α26,α5,α8,α15,α15,α24,α9,α30,α5,α8,
α3,α15,α26,α8,α9,α15,α28,α8,α9,α3].

Multiplying by the 31 × 31 matrix T32,α = [αi j], 0 ≤
i, j ≤ 30, we obtain [A31,A30, . . . ,A1] and hence the equiva-
lent univariate polynomial, which is g(x) = x+α22x2+α2x3+
α11x4 + α20x5 + x6 + α12x7 + α25x8 + α20x9 + α20x10 + α2x11 +
α5x12+α5x13+α23x14+α7x16+α27x17+α20x18+α6x19+α20x20+
α27x21 + x22 + α27x24 + x25 + α27x26 + α16x28.

As previously mentioned, the complexity of evaluating a
polynomial in n variables over a finite field Fq is O(qn/n).
The complexity of evaluating f in all of its n coordinates is
thus O(qn) and the complexity of evaluating f in all points
of Fqn is thus O(q2n). The computation of the matrix-vector
product in (5) involves O(q2n) operations over the field Fqn .
However, using any one of the number of classical fast algo-
rithms, such as Cooley-Tukey (see, e.g., [14]), the number of
operations can be reduced to O(qnn).

4. FIXED POINT SYSTEMS

A fixed point system (fps) is defined to be an fds whose state
space consists of trees, that is, contains no cycles other than
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trivial ones (of length one). The fixed point system problem
is the problem of determining of an fds whether or not it is
an fps. Of course one such method would be the brute force
method whereby we examine sequences determined by suc-
cessive applications of the state map to determine if any such
sequence contains a cycle of length greater than one. The
worst case occurs when the state space consists of one cycle.
Consider such a multivariate fds (Fn

q , f ). In order to recog-
nize a maximal cycle, f (a1, a2, . . . , an), f 2(a1, a2, . . . , an), . . . ,
such an approach would require backtracking at each step in
order to compare themost recent value f i(a1, a2, . . . , an) with
all previous values. An evaluation requires O(qn) operations,
there are qn such evaluations, and a comparison of two val-
ues requires n steps. The complexity of the complete process
is thus O(q2n + n2) = O(q2n).

To date, all results concerning the fixed point system
problem are characterized in terms of multivariate fds. A so-
lution to the fixed point system problem consists of charac-
terizing such an fds (Fn

q , f ) in terms of the structure of f . Ide-
ally, such conditions should be amenable to implementations
in polynomial time in n. In a recent work, Just [18] claims
that if the class of regulatory functions contains the quadratic
monotone functions xi ∨ xj and xi ∧ xj , then the fixed point
problem for Boolean dynamical systems is NP-hard. In view
of this result, it is unlikely that we can achieve the goal of a
polynomial time solution to the fixed point problem, at least
in the general case. However, the question arises if the above
O(q2n) result can be improved (to say O(qn)) and also what
are special cases of the fixed point problem that have polyno-
mial time solutions.

In this section we give a polynomial solution to the spe-
cial case of the fixed point problem for linear finite dy-
namical systems, we review known results for the nonlin-
ear case, and we point out how our results concerning the
general linear case for fds over finitely generated modules
give a more complete solution to the case of monomial
finite field dynamical systems over arbitrary finite fields.
We conclude by proposing a new approach to the prob-
lem via univariate systems, we give an algorithm for de-
termining the fixed points of a univariate system, and we
give a necessary condition for a univariate fds to be an
fps.

4.1. Linear fixed point systems

Finite dynamical systems over finite fields that are linear are
very amenable to analysis and have been studied extensively
in the literature (see [2, 9]).

In the multivariate case, a linear system over a fi-
nite field is represented by an fds (Fn

q , f ) where f can
be represented by an n × n matrix A over Fq. The fixed
points of a multivariate fds (Fm

q ,A) are simply the solu-
tions to the homogeneous system of equations (A − I)x =
0.

In the finite field model for genetic networks, we assume
that the number of states of each gene is a power of a prime.
However, we will give a more general model that eliminates
this assumption.

A module M over a ring R is said to be finitely generated
if there exists a set of elements {s1, s2, . . . , sn} ⊂ M such that
M = {r1s1 + r2s2 + · · · + rnsn | ri ∈ R}. Finitely generated
modules are generalized vector spaces. Examples are Fn

q and
the set Zn

m of n tuples over the ring of integers modulo an
arbitrary integerm.

A linear finite dynamical module system (lfdms) consists
of an ordered pair (M(R), f ) where M(R) is a finitely gen-
erated module over a finite commutative ring R with unity
and f : M(R) → M(R) is linear. Let (M1(R), f1) and
(M2(R), f2) be lfdms. We define the direct sum of (M1(R), f1)
and (M2(R), f2) to be the fds (M1⊕M2, f1⊕ f2) whereM1⊕M2

is the direct sum of the modules M1(R) and M2(R) and
f1⊕ f2 :M1⊕M2 →M1⊕M2 is defined by ( f1⊕ f2)(u+ v) =
f1(u) + f2(v), for each u ∈ M1(R) and v ∈ M2(R). The state
space of the direct sum is related to the component fds as
follows.

Lemma 5. Let G1 be the state space of the lfdms (M1(R), f1)
and let G2 be the state space of the lfdms (M2(R), f2). Then the
state space of the direct sum of (M1(R), f1) and (M2(R), f2) is
G1 ×G2.

This result has been noted in [9] for lfdms over fields.
We use the following well-known result (see, e.g., [19])

in order to establish necessary and sufficient conditions for
an lfdms to be a fixed point system.

Lemma 6 (Fitting’s lemma). Let (M(R), f ) be an lfdms. Then
there exist an integer n > 0 and submodules N and P satisfying

(i) N = f n(M(R)),
(ii) P = f −n(0),
(iii) (M(R), f ) = (N(R), f1)⊕ (P(R), f2), f1 = f |N (the
restriction of f to N) is invertible and f2 = f |P is nilpo-
tent.

Theorem 2. Let (M(R), f ) be an lfdms and let N be defined
as above. Then (M(R), f ) is a fixed point system if and only if
either f is nilpotent or f |N is the identity map.

Proof. By Fitting’s lemma, we have (M(R), f ) = (N(R),
f |N ) ⊕ (P(R), f |P) where N = f n(M(R)) and P = f −n(0).
Suppose that f is nilpotent. Then by Lemma 2, the state
space of (M(R), f ) is a tree. Next suppose that f |N is the
identity. Then by Lemma 3, the state space of (M(N), f |N )
is a union of cycles each of length one and by Lemma 2, the
state space of (M(P), f |P) is a tree. Hence by Lemma 4, the
state space of (M(R), f ) is a union of trees and so (M(R), f )
is a fixed point system.

Conversely, suppose that (M(R), f ) is a fixed point sys-
tem. Then the state space of (M(R), f ) is a union U of trees.
If U consists of only one tree, then by Lemma 3, f is nilpo-
tent. Now suppose that U is the union of at least two trees.
Since f is invertible on N , it is also one-to-one on N . By
Lemma 2, the state space of (N(R), f |N ) is a union of cycles.
Each of these cycles must be of length one. For if not, the
state space of (M(R), f ) would contain at least one n-cycled
tree where n > 1, contradicting that (M(R), f ) is a fixed point
system.
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Theorem 2 can be used to prove the following result,
which is suggested in [20, 21].

Corollary 1. A linear finite dynamical system (Fn
q , f ) over a

field is a fixed point system if and only if the characteristic
polynomial of f is of the form xn0 (x − 1)n1 and the minimal
polynomial is of the form xn

′
0 (x−1)n

′
1 where n′1 is either zero or

one.

Proof. Suppose (Fn
q , f ) is an fps. Then either f is nilpotent

or f |N is the identity. If f is nilpotent, then the character-
istic polynomial of f is of the form xn0 and the minimal
polynomial of f is of the form xn

′
0 . If f |N is the identity, then

the characteristic polynomial of f |N is of the form (x − 1)n1

and the minimal polynomial of f |N is of the form (x − 1)n
′
1

where 0 ≤ n′1 ≤ n1. Furthermore, n′1 ≤ 1 since otherwise
(Fn

q , f ) would not be an fps [2]. Therefore the characteristic
and minimal polynomials of f are of the desired forms.

Conversely, suppose that the characteristic polynomial of
f is of the form xn0 (x − 1)n1 and its minimal polynomial is
of the form xn

′
0 (x − 1)n

′
1 , where n′0 ≤ n0 and n′1 is either zero

or one. If n′0 = 0, then the characteristic polynomial of f is
(x− 1)n1 and so the minimal polynomial of f is x− 1, which
implies that f is the identity and hence (Fn

q , f ) is an fps. Next,
suppose that n′0 > 0. Then either n′1 = 0 or n′1 = 1. If n′1 = 0,
then the state space of (Fn

q , f ) is a tree. If n′1 = 1, then the
state space of (Fn

q , f ) is the product of a tree and cycles of
length one and, hence the union of trees.

The corollary gives us a polynomial time algorithm to de-
termine of a linear fds (Fn

q , f ), where f is given by an n × n
matrix, whether or not it is an fps. The characteristic poly-
nomial of f can be determined in time O(n3) using the def-
inition. The minimal polynomial of f can be determined
in time O(n3) using an algorithm of Storjohann [22]. Both
polynomials can be factored in subquadratic time using an
algorithm of Kaltofen and Shoup [23].

4.2. Monomial systems

The simplest nonlinear multivariate fds (Fn
q , f ) is one in

which each component function fi of f is a monomial, that
is, a product of powers of the variables. In [24], Colón-Reyes
et al. provide necessary and sufficient conditions that allow
one to determine in polynomial time when an fds of the form
(Fn

2 , f ), where f a monomial, is an fps. In [25], Colón-Reyes
et al. give necessary and sufficient conditions for (Fn

q , f ),
where f is a monomial and q an arbitrary prime, to be an
fps. However, one of these conditions is that a certain linear
fds over a ring be an fps, but no criterion is given for such
an fds to be an fps. Theorem 2 gives such a criterion. Let us
describe the situation in more detail.

Definition 3. If f = ( f1, f2, . . . , fn) where each f j is of the

form x
ε1 j
1 x

ε2 j
2 · · · xεnjn , j = 1, 2, . . . ,n, where each εi j belongs

to the ring Zq−1 of integersmodulo q−1, then (Fn
q , f ) is called

amonomial finite dynamical system. The log map of (Fn
q , f ) is

defined by the n × n matrix L f = [εi j], where 1 ≤ i, j ≤ n.
The support map is defined by S f = (h1,h2, . . . ,hn) where

each hi = xδi11 xδi22 · · · xδinn and where δi j is one if ε > 0 and is
zero otherwise.

The following theorem was published in [25].

Theorem 3 (Colón-Reyes, Jarrah, Laubenbacher, and Sturm-
fels). A monomial fds (Fn

q , f ) is an fps if and only if (Z
n
q−1,L f )

and (Zn
2 , S f ) are fixed point systems.

Example 4. Consider the monomial fds (F2
5 , f ) where f =

(xy, y) = (x1y1, x0y1). The matrix L f = ( 1 1
0 1 ) over Z4 is

nonsingular and hence not nilpotent. Furthermore, the n
of Theorem 2 is 1,N = Z4, and L f is not the identity. By
Theorem 2, (Z4,L f ) is not an fps and by the previous theo-
rem, (F2

5 , f ) is not an fps.

The problem of determining in polynomial time (in n)
when an lfdms (Rn, f ) is an fps, where R is a finite ring, is
open.

4.3. A univariate approach

The fixed point problem is an important problem, suitable
solutions for which have been obtained only in certain spe-
cial cases. All of the work done so far has been done formulti-
variate fds. By considering the problem in the univariate do-
main, it is possible to gain some insight that is not evident in
the multivariate domain. The results in the remainder of this
section are examples of this.

Lemma 7. (Fqn , g) has fixed points if and only if h(x) =
gcd(g(x)− x, xq

n − x) �= 1 and in such a case, the fixed points
are the zeros of h(x).

Proof. An element a of Fqn is a fixed point of (Fqn , g) if and
only if a is a zero of g(x) − x. Since xq

n = x for all x ∈ Fqn ,
xq

n − x contains all linear factors of the form x − a, a ∈ Fqn
and so a is a zero of g(x)− x if and only if x − a is a factor of
both g(x) − x and xq

n − x, that is, if and only if it is a factor
of h(x).

Lemma 7 gives us algorithms for determining whether or
not a given univariate fds has fixed points and if so, a method
to find all such points. For the first part, we note that the
greatest common divisor of two univariate polynomials of
degree no more than d can be determined using no more
than (d log2 d) operations [26]. Since g has degree at most
qn − 1, this means that the complexity for calculating h(x),
that is, for determining whether or not a given univariate fds
(Fqn , g) is an fps O(n2qn).

When h(x) �= 1, h(x) can be factored in order to deter-
mine the set of all fixed points. At worst, using the algorithm
in [23], the complexity of determining the factors of h(x) is
O(d1.815n), where d is the degree of h(x). Clearly, d is less than
or equal to the degree of g(x), which in practice is determined
by experimental data (e.g., from microarrays) and thus con-
siderably less than the total number of possible points qn. If
we assume that the degree of g(x) is not more than the square
root of qn, then d1.815n ≤ n2qn and the total complexity of the
algorithm for determining all fixed points is thus O(n2qn).



Dorothy Bollman et al. 7

0 1 2 4

3

Figure 2: State space of (F5, g), where g(x) = x3 over F5.

In contrast, the only known method for determining
the fixed points of a multivariate fds (Fn

q , f ) is the brute
force method of enumerating all state transitions and for
each value f (a1, a2, . . . , an) so generated, check to see if
f (a1, a2, . . . , an) = (a1, a2, . . . , an). The number of operations
in this method is O(q2n).

Inmany cases, the degree of h(x) of Lemma 7 is small and
its zeros can be found by inspection or by only several trials
and errors. The lac operon example illustrates this.

Example 5. Let (F32, g) be the fds describing the lac operon
(Example 3).We have h(x) = gcd(g(x), x32−x) = x4+α26x3+
α18x2 = x2(x − α3)(x − α15) and thus the fixed points are
x = 0, x = α3, and x = α15.

Lemma 7 also gives a necessary condition for an fds to be
an fps, which for emphasis we state as a theorem.

Theorem 4. With the notation of Lemma 7, if (Fq, g) is an fps,
then h(x) �= 1.

Proof. If h(x) = 1, then (Fqn , g) has no fixed points and all
cycles are nontrivial. Hence by Lemma 7, (Fqn , g) is not an
fps.

The converse of Theorem 4 is not true.

Example 6. Consider the fds (F5, g) where g(x) = x3. Then
h(x) = gcd(x5 − x, x3 − x) = x3 − x �= 1, but (F5, g) is not an
fps. (see Figure 2).

5. IMPLEMENTATION ISSUES

One of the difficulties of implementing algorithms for the
multivariate model is the choice of data structures, which
can, in fact, affect complexity. For example, no algorithm is
known for factoring multivariate polynomials that runs in
time polynomial in the length of the “sparse” representation.
However, such an algorithm exists for the “black box” repre-
sentation (see, e.g., [27]).

On the other hand, data structures needed for algorithms
for the univariate model are well known and simple to im-
plement. In this case, one can also take advantage of well-
knownmethods used in cryptography and coding theory. Ta-
ble lookup methods for carrying out finite field arithmetic
are an example. By using lookup tables we can make arith-
metic operations at almost no cost. However, for very large
fields, memory space becomes a limitation. Ferrer [28] has
implemented table lookup arithmetic for fields of charac-
teristic 2 on a Hewlett-Packard Itanium machine with two

900MHz ia64 CPU modules and 4GB of RAM. On this ma-
chine, we can create lookup tables of up to 229 elements.

Multiplication is by far the most costly finite field oper-
ation and also the most often used, since other operations
such as computing powers and computing inverses make
use of multiplication. In other experiments on the Hewlett-
Packard Itanium, Ferrer [28] takes advantage of machine
hardware in order to implement a “direct” multiplication al-
gorithm for F2n that runs in time linear in n for n = 2 up to
n = 63 [28]. Here the field size is limited by the word-length
of the computer architecture.

For larger fields, we can make use of “composite” fields
(see, e.g., [29]), that is, fields Fn where n is composite, say
n = rs. Making use of the isomorphism of F2rs and F(2r )s ,
we can use table lookup for a suitable “ground field” Fr and
the direct method mentioned above for multiplication in the
extension field F(2r )s . Using the ground field F25 and selected
values of s, Ferrer [28] obtains running time O(s2).

Still another approach to implement finite field arith-
metic, that is, especially efficient for fields of characteristic 2,
is the use of reconfigurable hardware or “field programmable
gate arrays” (FPGAs). In [30], Ferrer, Moreno and the first
author obtain a multiplication algorithm which outperforms
all other known FPGAmultiplication algorithms for fields of
characteristic 2.

6. CONCLUSIONS

One piece of information that is of utmost interest when
modeling biological events, in particular gene regulation net-
works, is when the dynamics reaches a steady state. If the
modeling of such networks is done by discrete finite dynam-
ical systems, such information is given by the fixed points of
the underlying system. We have shown that we can choose
between a multivariate and a univariate polynomial repre-
sentation. Here we introduce a new tool, the discrete Fourier
transform that helps us change from one representation to
the other, without altering the dynamics of the system.

We provide a criterion to determine when a linear finite
dynamical system over an arbitrary finitely generatedmodule
over a commutative ring with unity is a fixed point system.
When a gene regulation network is modeled by a linear finite
dynamical system we can then decide if such an event reaches
a steady state using our results. When the finitely generated
module is a finite field we can decide in polynomial time.

Gene regulation networks, as suggested in the literature,
seem to obey very complex mechanisms whose rules appear
to be of a nonlinear nature (see [31]). In this regard, we have
made explicit some useful facts concerning fixed points and
fixed point systems. We have given algorithms for determin-
ing when a univariate fds has at least one fixed point and how
to find them. We have also given a necessary condition for
a univariable fds to be a fixed point system. However, there
are still much to be done and a number of open problems
remain. In particular, what families of fds admit polynomial
time algorithms for determining whether or not a given fds is
an fps? This work is a first step towards the aim of designing
theories and practical tools to tackle the general problem of
fixed points in finite dynamical systems.
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