
Hindawi Publishing Corporation
EURASIP Journal on Bioinformatics and Systems Biology
Volume 2007, Article ID 90947, 11 pages
doi:10.1155/2007/90947

Research Article
NML Computation Algorithms for Tree-Structured
Multinomial Bayesian Networks

Petri Kontkanen, HannesWettig, and Petri Myllymäki
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Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains,
it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL) principle is a
theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is
based on the normalized maximum likelihood (NML) distribution, which has several desirable theoretical properties. In the case
of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size,
since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algo-
rithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending
these algorithms to more complex, tree-structured Bayesian networks.
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1. INTRODUCTION

Many problems in bioinformatics can be cast as model class
selection tasks, that is, as tasks of selecting among a set of
competing mathematical explanations the one that best de-
scribes a given sample of data. Typical examples of this kind
of problem are DNA sequence compression [1], microarray
data clustering [2–4] and modeling of genetic networks [5].
The minimum description length (MDL) principle developed
in the series of papers [6–8] is a well-founded, general frame-
work for performing model class selection and other types of
statistical inference. The fundamental idea behind the MDL
principle is that any regularity in data can be used to compress
the data, that is, to find a description or code of it, such that
this description uses less symbols than it takes to describe
the data literally. The more regularities there are, the more
the data can be compressed. According to the MDL princi-
ple, learning can be equated with finding regularities in data.
Consequently, we can say that the more we are able to com-
press the data, the more we have learned about them.

MDL model class selection is based on a quantity called
stochastic complexity (SC), which is the description length of
a given data relative to a model class. The stochastic com-
plexity is defined via the normalized maximum likelihood
(NML) distribution [8, 9]. For multinomial (discrete) data,

this definition involves a normalizing sum over all the possi-
ble data samples of a fixed size. The logarithm of this sum is
called the regret or parametric complexity, and it can be inter-
preted as the amount of complexity of the model class. If the
data is continuous, the sum is replaced by the corresponding
integral.

The NML distribution has several theoretical optimality
properties, which make it a very attractive candidate for per-
forming model class selection and related tasks. It was origi-
nally [8, 10] formulated as the unique solution to a minimax
problem presented in [9], which implied that NML is the
minimax optimal universal model. Later [11], it was shown
that NML is also the solution to a related problem involving
expected regret. See Section 2 and [10–13] for more discus-
sion on the theoretical properties of the NML.

Typical bioinformatic problems involve large discrete
datasets. In order to apply NML for these tasks one needs to
develop suitable NML computation methods since the nor-
malizing sum or integral in the definition of NML is typically
difficult to compute directly. In this paper, we present algo-
rithms for efficient computation of NML for both one- and
multidimensional discrete data. The model families used in
the paper are so-called Bayesian networks (see, e.g., [14]) of
varying complexity. A Bayesian network is a graphical repre-
sentation of a joint distribution. The structure of the graph
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corresponds to certain conditional independence assump-
tions. Note that despite the name, having Bayesian network
models does not necessarily imply using Bayesian statistics,
and the information-theoretic approach of this paper cannot
be considered Bayesian.

The problem of computing NML for discrete data has
been studied before. In [15] a linear-time algorithm for
the one-dimensional multinomial case was derived. A more
complex case involving a multidimensional model family,
called naive Bayes, was discussed in [16]. Both these cases
are also reviewed in this paper.

The paper is structured as follows. In Section 2, we dis-
cuss the basic properties of the MDL principle and the NML
distribution. In Section 3, we instantiate the NML distribu-
tion for the multinomial case and present a linear-time com-
putation algorithm. The topic of Section 4 is the naive Bayes
model family. NML computation for an extension of naive
Bayes, the so-called Bayesian forests, is discussed in Section 5.
Finally, Section 6 gives some concluding remarks.

2. PROPERTIES OF THEMDL PRINCIPLE AND
THE NMLMODEL

TheMDL principle has several desirable properties. Firstly, it
automatically protects against overfitting in the model class
selection process. Secondly, this statistical framework does
not, unlike most other frameworks, assume that there exists
some underlying “true” model. The model class is only used
as a technical device for constructing an efficient code for de-
scribing the data. MDL is also closely related to the Bayesian
inference but there are some fundamental differences, the
most important being that MDL does not need any prior dis-
tribution; it only uses the data at hand. For more discussion
on the theoretical motivations behind theMDL principle see,
for example, [8, 10–13, 17].

The MDL model class selection is based on minimiza-
tion of the stochastic complexity. In the following, we give
the definition of the stochastic complexity and then proceed
by discussing its theoretical properties.

2.1. Model classes and families

Let xn = (x1, . . . , xn) be a data sample of n outcomes, where
each outcome xj is an element of some space of observations
X. The n-fold Cartesian product X × · · · ×X is denoted
by Xn, so that xn ∈ Xn. Consider a set Θ ⊆ Rd, where d is
a positive integer. A class of parametric distributions indexed
by the elements of Θ is called a model class. That is, a model
classM is defined as

M = {P(· | θ) : θ ∈ Θ
}

(1)

and the set Θ is called the parameter space.
Consider a set Φ ⊆ Re, where e is a positive integer. De-

fine a set F by

F = {M(ϕ) : ϕ ∈ Φ
}
. (2)

The set F is called a model family, and each of the elements
M(ϕ) is a model class. The associated parameter space is de-
noted by Θϕ. The model class selection problem can now be

defined as a process of finding the parameter vector ϕ, which
is optimal according to some predetermined criteria. In Sec-
tions 3–5, we discuss three specific model families, which will
make these definitions more concrete.

2.2. The NML distribution

One of the most theoretically and intuitively appealing
model class selection criteria is the stochastic complexity.
Denote first the maximum likelihood estimate of data xn

for a given model class M(ϕ) by θ̂(xn,M(ϕ)), that is,

θ̂(xn,M(ϕ)) = argmax θ∈Θϕ{P(xn | θ)}. The normalized
maximum likelihood (NML) distribution [9] is now defined
as

PNML
(
xn |M(ϕ)

) = P
(
xn | θ̂(xn,M(ϕ)

))

C
(
M(ϕ),n

) , (3)

where the normalizing term C(M(ϕ),n) in the case of dis-
crete data is given by

C
(
M(ϕ),n

) =
∑

yn∈Xn

P
(
yn | θ̂(yn,M(ϕ)

))
(4)

and the sum goes over the space of data samples of size n.
If the data is continuous, the sum is replaced by the
corresponding integral.

The stochastic complexity of the data xn, given a model
classM(ϕ), is defined via the NML distribution as

SC
(
xn |M(ϕ)

)

= − logPNML
(
xn |M(ϕ)

)

= − logP
(
xn | θ̂(xn,M(ϕ)

))
+ logC

(
M(ϕ),n

)

(5)

and the term logC(M(ϕ),n) is called the (minimax) regret or
parametric complexity. The regret can be interpreted as mea-
suring the logarithm of the number of essentially different
(distinguishable) distributions in the model class. Intuitively,
if two distributions assign high likelihood to the same data
samples, they do not contribute much to the overall com-
plexity of the model class, and the distributions should not
be counted as different for the purposes of statistical infer-
ence. See [18] for more discussion on this topic.

The NML distribution (3) has several important theoret-
ical optimality properties. The first is that NML provides a
unique solution to the minimax problem

min
P̂

max
xn

log
P
(
xn | θ̂(xn,M(ϕ)

))

P̂
(
xn |M(ϕ)

) , (6)

as posed in [9]. The minimizing P̂ is the NML distribution,
and the minimax regret

logP
(
xn | θ̂(xn,M(ϕ)

))− log P̂
(
xn |M(ϕ)

)
(7)

is given by the parametric complexity logC(M(ϕ),n). This
means that the NML distribution is theminimax optimal uni-
versal model. The term universal model in this context means
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that the NML distribution represents (or mimics) the behav-
ior of all the distributions in the model classM(ϕ). Note that
the NML distribution itself does not have to belong to the
model class, and typically it does not.

A related property of NML involving expected regret was
proven in [11]. This property states that NML is also a unique
solution to

max
g

min
q

Eg log
P
(
xn | θ̂(xn,M(ϕ)

))

q
(
xn |M(ϕ)

) , (8)

where the expectation is taken over xn with respect to g and
the minimizing distribution q equals g. Also the maximin ex-
pected regret is thus given by logC(M(ϕ),n).

3. NML FORMULTINOMIALMODELS

In the case of discrete data, the simplest model family is the
multinomial. The data are assumed to be one-dimensional
and to have only a finite set of possible values. Although sim-
ple, the multinomial model family has practical applications.
For example, in [19] multinomial NML was used for his-
togram density estimation, and the density estimation prob-
lem was regarded as a model class selection task.

3.1. Themodel family

Assume that our problem domain consists of a single dis-
crete random variable X with K values, and that our data
xn = (x1, . . . , xn) is multinomially distributed. The space of
observationsX is now the set {1, 2, . . . ,K}. The correspond-
ing model family FMN is defined by

FMN =
{
M(ϕ) : ϕ ∈ ΦMN

}
, (9)

whereΦMN = {1, 2, 3, . . . }. Since the parameter vector ϕ is in
this case a single integer K we denote the multinomial model
classes byM(K) and define

M(K) = {P(· | θ) : θ ∈ ΘK
}
, (10)

where ΘK is the simplex-shaped parameter space,

ΘK =
{(
π1, . . . ,πK

)
: πk ≥ 0, π1 + · · · + πK = 1

}
(11)

with πk = P(X = k), k = 1, . . . ,K.
Assume the data points xj are independent and identi-

cally distributed (i.i.d.). The NML distribution (3) for the
model classM(K) is now given by (see, e.g., [16, 20])

PNML
(
xn |M(K)

) =
∏ K

k=1
(
hk/n

)hk

C
(
M(K),n

) , (12)

where hk is the frequency (number of occurrences) of value
k in xn, and

C
(
M(K),n

) =
∑

yn
P
(
yn | θ̂(yn,M(K)

))
(13)

=
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk
n

)hk
. (14)

To make the notation more compact and consistent in this
section and the following sections, C(M(K),n) is from now
on denoted by CMN(K ,n).

It is clear that the maximum likelihood term in (12) can
be computed in linear time by simply sweeping through the
data once and counting the frequencies hk. However, the nor-
malizing sum CMN(K ,n) (and thus also the parametric com-
plexity logCMN(K ,n)) involves a sum over an exponential
number of terms. Consequently, the time complexity of com-
puting the multinomial NML is dominated by (14).

3.2. The quadratic-time algorithm

In [16, 20], a recursion formula for removing the exponen-
tiality of CMN(K ,n) was presented. This formula is given by

CMN(K ,n) =
∑

r1+r2=n

n!
r1!r2!

(
r1
n

)r1( r2
n

)r2

·CMN
(
K∗, r1

)·CMN
(
K − K∗, r2

)
,

(15)

which holds for all K∗ = 1, . . . ,K − 1. A straightforward
algorithm based on this formula was then used to compute
CMN(K ,n) in timeO(n2 logK). See [16, 20] for more details.
Note that in [21, 22] the quadratic-time algorithm was im-
proved to O(n logn logK) by writing (15) as a convolution-
type sum and then using the fast Fourier transform algo-
rithm. However, the relevance of this result is unclear due
to severe numerical instability problems it easily produces in
practice.

3.3. The linear-time algorithm

Although the previous algorithms have succeeded in remov-
ing the exponentiality of the computation of themultinomial
NML, they are still superlinear with respect to n. In [15], a
linear-time algorithm based on the mathematical technique
of generating functions was derived for the problem.

The starting point of the derivation is the generating
function B defined by

B(z) = 1
1− T(z)

=
∑

n≥0

nn

n!
zn, (16)

where T is the so-called Cayley’s tree function [23, 24]. It is
easy to prove (see [15, 25]) that the function BK generates
the sequence ((nn/n!)CMN(K ,n))

∞
n=0, that is,

BK (z) =
∑

n≥0

nn

n!
·

∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk
n

)hk
zn

=
∑

n≥0

nn

n!
·CMN(K ,n)zn,

(17)

which by using the tree function T can be written as

BK (z) = 1
(
1− T(z)

)K . (18)

The properties of the tree function T can be used to prove
the following theorem.
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Theorem 1. The CMN(K ,n) terms satisfy the recurrence

CMN(K + 2,n) = CMN(K + 1,n) +
n

K
·CMN(K ,n). (19)

Proof. See the appendix.

It is now straightforward to write a linear-time algo-
rithm for computing the multinomial NML PNML(xn |
M(K)) based on Theorem 1. The process is described in
Algorithm 1. The time complexity of the algorithm is clearly
O(n + K), which is a major improvement over the previous
methods. The algorithm is also very easy to implement and
does not suffer from any numerical instability problems.

3.4. Approximating themultinomial NML

In practice, it is often not necessary to compute the exact
value of CMN(K ,n). A very general and powerful mathemat-
ical technique called singularity analysis [26] can be used
to derive an accurate, constant-time approximation for the
multinomial regret. The idea of singularity analysis is to use
the analytical properties of the generating function in ques-
tion by studying its singularities, which then leads to the
asymptotic form for the coefficients. See [25, 26] for details.

For themultinomial case, the singularity analysis approx-
imation was first derived in [25] in the context ofmemoryless
sources, and later [20] re-introduced in theMDL framework.
The approximation is given by

logCMN(K ,n)

= K − 1
2

log
n

2
+ log

√
π

Γ(K/2)
+

√
2K·Γ(K/2)

3Γ(K/2− 1/2)
· 1√

n

+
(
3 + K(K − 2)(2K + 1)

36
− Γ2(K/2)·K2

9Γ2(K/2− 1/2)

)
· 1
n

+O
(

1
n3/2

)
.

(20)

Since the error term of (20) goes down with the rate
O(1/n3/2), the approximation converges very rapidly. In [20],
the accuracy of (20) and two other approximations (Rissa-
nen’s asymptotic expansion [8] and Bayesian information
criterion (BIC) [27]) were tested empirically. The results
show that (20) is significantly better than the other approx-
imations and accurate already with very small sample sizes.
See [20] for more details.

4. NML FOR THE NAIVE BAYESMODEL

The one-dimensional case discussed in the previous section
is not adequate for many real-world situations, where data
are typically multidimensional, involving complex depen-
dencies between the domain variables. In [16], a quadratic-
time algorithm for computing the NML for a specific
multivariate model family, usually called the naive Bayes, was
derived. This model family has been very successful in prac-
tice in mixture modeling [28], clustering of data [16], case-
based reasoning [29], classification [30, 31], and data visual-
ization [32].

4.1. Themodel family

Let us assume that our problem domain consists of m pri-
mary variables X1, . . . ,Xm and a special variable X0, which
can be one of the variables in our original problem do-
main or it can be latent. Assume that the variable Xi has
Ki values and that the extra variable X0 has K0 values. The
data xn = (x1, . . . , xn) consist of observations of the form
x j = (xj0, xj1, . . . , xjm) ∈X, where

X = {1, 2, . . . ,K0
}× {1, 2, . . . ,K1

}× · · · × {1, 2, . . . ,Km
}
.

(21)

The naive Bayes model family FNB is defined by

FNB =
{
M(ϕ) : ϕ ∈ ΦNB

}
(22)

with ΦNB = {1, 2, 3, . . . }m+1. The corresponding model
classes are denoted byM(K0,K1, . . . ,Km):

M
(
K0,K1, . . . ,Km

) = {PNB(· | θ) : θ ∈ ΘK0,K1,...,Km

}
.
(23)

The basic naive Bayes assumption is that given the value of
the special variable, the primary variables are independent.
We have consequently

PNB
(
X0 = x0,X1 = x1, . . . ,Xm = xm | θ

)

= P
(
X0 = x0 | θ

)·
m∏

i=1
P
(
Xi = xi | X0 = x0, θ

)
.

(24)

Furthermore, we assume that the distribution of P(X0 | θ) is
multinomial with parameters (π1, . . . ,πK0 ), and each P(Xi |
X0 = k, θ) is multinomial with parameters (σik1, . . . , σikKi).
The whole parameter space is then

ΘK0,K1,...,Km

= {(π1, . . . ,πK0

)
,
(
σ111, . . . , σ11K1

)
, . . . ,

(
σmK01, . . . , σmK0Km

)
:

πk ≥ 0, σikl ≥ 0, π1 + · · · + πK0 = 1,

σik1 + · · · + σikKi = 1, i = 1, . . . ,m, k = 1, . . . K0
}
,
(25)

and the parameters are defined by πk = P(X0 = k), σikl =
P(Xi = l | X0 = k).

Assuming i.i.d., the NML distribution for the naive Bayes
can now be written as (see [16])

PNML
(
xn |M(

K0,K1, . . . ,Km
))

=
∏ K0

k=1
(
hk/n

)hk∏m
i=1
∏ Ki

l=1
(
fikl/hk

) fikl

C
(
M
(
K0,K1, . . . ,Km

)
,n
) ,

(26)

where hk is the number of timesX0 has value k in xn, fikl is the
number of times Xi has value l when the special variable has
value k, and C(M(K0,K1, . . . ,Km),n) is given by (see [16])

C
(
M
(
K0,K1, . . . ,Km

)
,n
)

=
∑

h1+···+hK0=n

n!
h1! · · ·hK0 !

K0∏

k=1

(
hk
n

)hk m∏

i=1
CMN

(
Ki,hk

)
.

(27)

To simplify notations, from now on we write C(M(K0,
K1, . . . ,Km),n) in an abbreviated form CNB(K0,n).
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1: Count the frequencies h1, . . . ,hK from the data xn

2: Compute the likelihood P(xn | θ̂(xn,M(K))) =∏ K
k=1(hk/n)

hk

3: Set CMN(1,n) = 1
4: Compute CMN(2,n) =

∑
r1+r2=n(n!/r1!r2!)(r1/n)

r1 (r2/n)
r2

5: for k = 1 to K − 2 do
6: Compute CMN(k + 2,n) = CMN(k + 1,n) + (n/k)·CMN(k,n)
7: end for
8: Output PNML(xn |M(K)) = P(xn | θ̂(xn,M(K)))/CMN(K ,n)

Algorithm 1: The linear-time algorithm for computing PNML(xn |M(K)).

4.2. The quadratic-time algorithm

It turns out [16] that the recursive formula (15) can be gen-
eralized to the naive Bayes model family case.

Theorem 2. The terms CNB(K0,n) satisfy the recurrence

CNB
(
K0,n

) =
∑

r1+r2=n

n!
r1!r2!

(
r1
n

)r1( r2
n

)r2

·CNB
(
K∗, r1

)·CNB
(
K0 − K∗, r2

)
,

(28)

where K∗ = 1, . . . ,K0 − 1.

Proof. See the appendix.

In many practical applications of the naive Bayes, the
quantity K0 is unknown. Its value is typically determined
as a part of the model class selection process. Conse-
quently, it is necessary to compute NML for model classes
M(K0,K1, . . . ,Km), where K0 has a range of values, say, K0 =
1, . . . ,Kmax . The process of computing NML for this case is
described in Algorithm 2. The time complexity of the algo-
rithm isO(n2·Kmax ). If the value ofK0 is fixed, the time com-
plexity drops to O(n2· logK0). See [16] for more details.

5. NML FOR BAYESIAN FORESTS

The naive Bayes model discussed in the previous section has
been successfully applied in various domains. In this section
we consider, tree-structured Bayesian networks, which in-
clude the naive Bayes model as a special case but can also
represent more complex dependencies.

5.1. Themodel family

As before, we assumem variables X1, . . . ,Xm with given value
cardinalities K1, . . . ,Km. Since the goal here is to model the
joint probability distribution of the m variables, there is no
need to mark a special variable. We assume a data matrix
xn = (xji) ∈Xn, 1 ≤ j ≤ n, and 1 ≤ i ≤ m, as given.

A Bayesian network structure G encodes independence
assumptions so that if each variable Xi is represented as a
node in the network, then the joint probability distribution
factorizes into a product of local probability distributions,
one for each node, conditioned on its parent set. We define
a Bayesian forest to be a Bayesian network structure G on the
node set X1, . . . ,Xm which assigns at most one parent Xpa(i)

to any node Xi. Consequently, a Bayesian tree is a connected
Bayesian forest and a Bayesian forest breaks down into com-
ponent trees, that is, connected subgraphs. The root of each
such component tree lacks a parent, in which case we write
pa(i) = ∅.

The parent set of a node Xi thus reduces to a single value
pa(i) ∈ {1, . . . , i − 1, i + 1, . . . ,m,∅}. Let further ch(i) de-
note the set of children of node Xi in G and ch(∅) denote the
“children of none,” that is, the roots of the component trees
of G.

The corresponding model family FBF can be indexed
by the network structure G and the corresponding attribute
value counts K1, . . . ,Km:

FBF =
{
M(ϕ) : ϕ ∈ ΦBF

}
(29)

with ΦBF = {1, . . . , |G|} × {1, 2, 3, . . . }m, where G is asso-
ciated with an integer according to some enumeration of
all Bayesian forests on (X1, . . . ,Xm). As the Ki are assumed
fixed, we can abbreviate the corresponding model classes by
M(G) :=M(G,K1, . . . ,Km).

Given a forest model classM(G), we index eachmodel by
a parameter vector θ in the corresponding parameter space
ΘG:

ΘG =
{
θ = (θikl

)
: θikl ≥ 0,

∑

l

θikl = 1,

i = 1, . . . ,m, k = 1, . . . ,Kpa(i), l = 1, . . . ,Ki

}
,

(30)

where we define K∅ := 1 in order to unify notation for root
and non-root nodes. Each such θikl defines a probability

θikl = P
(
Xi = l | Xpa(i) = k,M(G), θ

)
, (31)

where we interpret X∅ = 1 as a null condition.
The joint probability that a model M = (G, θ) assigns to

a data vector x = (x1, . . . , xm) becomes

P
(
x |M(G), θ

)

=
m∏

i=1
P
(
Xi = xi | Xpa(i) = xpa(i),M(G), θ

) =
m∏

i=1
θi,xpa(i),xi .

(32)
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1: Compute CMN(k, j) for k = 1, . . . ,Vmax , j = 0, . . . ,n, where Vmax = max {K1, . . . ,Km}
2: for K0 = 1 to Kmax do
3: Count the frequencies h1, . . . ,hK0 , fik1, . . . , fikKi for i = 1, . . . ,m, k = 1, . . . ,K0 from the data xn

4: Compute the likelihood:

P(xn | θ̂(xn,M(K0,K1, . . . ,Km))) =
∏ K0

k=1(hk/n)
hk
∏m

i=1
∏ Ki

l=1( fikl/hk)
fikl

5: Set CNB(K0, 0) = 1
6: if K0 = 1 then
7: Compute CNB(1, j) =

∏m
i=1CMN(Ki, j) for j = 1, . . . ,n

8: else
9: Compute CNB(K0, j) =

∑
r1+r2= j( j!/r1!r2!)(r1/ j)

r1 (r2/ j)
r2·CNB(1, r1)·CNB(K0 − 1, r2) for j = 1, . . . ,n

10: end if
11: Output PNML(xn |M(K0,K1, . . . ,Km)) = P(xn | θ̂(xn,M(K0,K1, . . . ,Km)))/CNB(K0,n)
12: end for

Algorithm 2: The algorithm for computing PNML(xn |M(K0,K1, . . . ,Km)) for K0 = 1, . . . ,Kmax .

For a sample xn = (xji) of n vectors x j , we define the corre-
sponding frequencies as

fikl :=
∣
∣{ j : xji = l ∧ xj,pa(i) = k

}∣∣,

fil :=
∣
∣{ j : xji = l

}∣∣ =
Kpa(i)∑

k=1
fikl.

(33)

By definition, for any component tree root Xi, we have fil =
fi1l. The probability assigned to a sample xn can then be writ-
ten as

P
(
xn |M(G), θ

) =
m∏

i=1

Kpa(i)∏

k=1

Ki∏

l=1
θ
fikl
ikl , (34)

which is maximized at

θ̂ikl
(
xn,M(G)

) = fikl
fpa(i),k

, (35)

where we define f∅,1 := n. The maximum data likelihood
thereby is

P̂
(
xn |M(G)

) =
m∏

i=1

Kpa(i)∏

k=1

Ki∏

l=1

(
fikl

fpa(i),k

) fikl

. (36)

5.2. The algorithm

The goal is to calculate the NML distribution PNML(xn |
M(G)) defined in (3). This consists of calculating the
maximum data likelihood (36) and the normalizing term
C(M(G),n) given in (4). The former involves frequency
counting, one sweep through the data, and multiplication
of the appropriate values. This can be done in time O(n +∑

iKiKpa(i)). The latter involves a sum exponential in n,
which clearly makes it the computational bottleneck of the
algorithm.

Our approach is to break up the normalizing sum in (4)
into terms corresponding to subtrees with given frequencies
in either their root or its parent. We then calculate the com-

plete sum by sweeping through the graph once, bottom-up.
Let us now introduce some necessary notation.

Let G be a given Bayesian forest. Then for any node Xi

denote the subtree rooting inXi, byGsub(i) and the forest built
up by all descendants of Xi by Gdsc(i). The corresponding data
domains areXsub(i) andXdsc(i), respectively. Denote the sum
over all n-instantiations of a subtree by

Ci
(
M(G),n

)
:=

∑

xnsub(i)∈Xn
sub(i)

P
(
xnsub(i) | θ̂

(
xnsub(i)

)
,M

(
Gsub(i)

))

(37)

and for any vector xni ∈ Xn
i with frequencies fi = ( fi1,

. . . , fiKi), we define

Ci
(
M(G),n | fi

)

:=
∑

xndsc(i)∈Xn
dsc(i)

P
(
xndsc(i), x

n
i | θ̂

(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

))

(38)

to be the corresponding sum with fixed root instantiation,
summing only over the attribute space spanned by the de-
scendants on Xi.

Note that we use fi on the left-hand side, and xni on the
right-hand side of the definition. This needs to be justified.
Interestingly, while the terms in the sum depend on the or-
dering of xni , the sum itself depends on xni only through its
frequencies fi. To see this pick, any two representatives xni and
xni of fi and find, for example, after lexicographical ordering
of the elements, that

{(
xni , x

n
dsc(i)

)
:xndsc(i)∈Xn

dsc(i)

}
=
{(

xni , x
n
dsc(i)

)
:xndsc(i)∈Xn

dsc(i)

}
.

(39)

Next, we need to define corresponding sums overXsub(i)

with the frequencies at the subtree root parent Xpa(i) given.
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For any fpa(i)∼xnpa(i) ∈ Xn
pa(i) define

Li
(
M(G),n | fpa(i)

)

:=
∑

xnsub(i)∈Xn
sub(i)

P
(
xnsub(i) | xnpa(i), θ̂

(
xnsub(i), x

n
pa(i)

)
,M

(
Gsub(i)

))
.

(40)

Again, this is well defined since any other representative xnpa(i)
of fpa(i) yields summing the same terms modulo their order-
ing.

After having introduced this notation, we now briefly
outline the algorithm and in the following subsections give
a more detailed description of the steps involved. As stated
before, we go through G bottom-up. At each inner node Xi,
we receive L j(M(G),n | fi) from each child Xj , j ∈ ch(i).
Correspondingly, we are required to sendLi(M(G),n | fpa(i))
up to the parent Xpa(i). At each component tree root Xi, we
then calculate the sum Ci(M(G),n) for the whole connec-
tivity component and then combine these sums to get the
normalizer Ci(M(G),n) for the complete forest G.

5.2.1. Leaves

For a leaf node Xi we can calculate the Li(M(G),n |
fpa(i)) without listing its own frequencies fi. As in (27),
fpa(i) splits the n data vectors into Kpa(i) subsets of sizes
fpa(i),1, . . . , fpa(i),Kpa(i) and each of them can be modeled inde-
pendently as a multinomial; we have

Li
(
M(G),n | fpa(i)

) =
Kpa(i)∏

k=1
CMN

(
Ki, fpa(i),k

)
. (41)

The terms CMN(Ki,n′) (for n′ = 0, . . . ,n) can be precalcu-
lated using recurrence (19) as in Algorithm 1.

5.2.2. Inner nodes

For inner nodes Xi we divide the task into two steps. First, we
collect the child messagesL j(M(G),n | fi) sent by each child
Xj ∈ ch(i) into partial sums Ci(M(G),n | fi) over Xdsc(i),
and then “lift” these to sumsLi(M(G),n | fpa(i)) overXsub(i)

which are the messages to the parent.
The first step is simple. Given an instantiation xni at Xi or,

equivalently, the corresponding frequencies fi, the subtrees
rooting in the children ch(i) of Xi become independent of
each other. Thus we have

Ci
(
M(G),n | fi

)

=
∑

xndsc(i)∈Xn
dsc(i)

P
(
xndsc(i), x

n
i | θ̂

(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

)) (42)

= P
(
xni | θ̂

(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

))

×
(

∑

xndsc(i)∈Xn
dsc(i)

∏

j∈ch(i)
P
(
xndsc(i)|sub( j) | xni ,

θ̂
(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

))
)

(43)

= P
(
xni | θ̂

(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

))

×
∏

j∈ch(i)

⎛

⎜
⎝

∑

xnsub( j)∈Xn
sub( j)

P
(
xnsub( j) | xni ,

θ̂
(
xndsc(i), x

n
i

)
,M

(
Gsub(i)

))

⎞

⎟
⎠

(44)

=
Ki∏

l=1

(
fil
n

) fil ∏

j∈ch(i)
L j
(
M(G),n | fi

)
, (45)

where xndsc(i)|sub( j) is the restriction of xdsc(i) to columns cor-
responding to nodes in G j . We have used (38) for (42), (32)
for (43) and (44), and finally (36) and (40) for (45).

Now we need to calculate the outgoing messages
Li(M(G),n | fpa(i)) from the incomingmessages we have just
combined into Ci(M(G),n | fi). This is the most demanding
part of the algorithm, for we need to list all possible condi-
tional frequencies, of which there areO(nKiKpa(i)−1) many, the
−1 being due to the sum-to-n constraint. For fixed i, we ar-
range the conditional frequencies fikl into a matrix F = ( fikl)
and define its marginals

ρ(F) :=
(∑

k

fik1, . . . ,
∑

k

fikKi

)
,

γ(F) :=
(∑

l

fi1l, . . . ,
∑

l

fiKpa(i)l

) (46)

to be the vectors obtained by summing the rows of F
and the columns of F, respectively. Each such matrix then
corresponds to a term Ci(M(G),n | ρ(F)) and a term
Li(M(G),n | γ(F)). Formally, we have

Li
(
M(G),n | fpa(i)

) =
∑

F:γ(F)=fpa(i)
Ci
(
M(G),n | ρ(F)).

(47)

5.2.3. Component tree roots

For a component tree root Xi ∈ ch(∅) we do not need to
pass any message upward. All we need is the complete sum
over the component tree

Ci
(
MG,n

) =
∑

fi

n!
fi1! · · · fiKi !

Ci
(
MG,n | fi

)
, (48)

where the Ci(MG,n | fi) are calculated from (45). The sum-
mation goes over all nonnegative integer vectors fi summing
to n. The above is trivially true since we sum over all instan-
tiations xi of Xi and group like terms, corresponding to the
same frequency vector fi, while keeping track of their respec-
tive count, namely n!/ fi1! · · · fiKi !.

5.2.4. The algorithm

For the complete forest G we simply multiply the sums over
its tree components. Since these are independent of each
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1: Count all frequencies fikl and fil from the data xn

2: Compute P̂(xn |M(G)) =∏m
i=1
∏ Kpa(i)

k=1
∏ Ki

l=1( fikl/ fpa(i),k)
fikl

3: for k = 1, . . . ,Kmax := max
i:Xi is a leaf

{Ki} and n′ = 0, . . . ,n do

4: Compute CMN(k,n′) as in Algorithm 1
5: end for
6: for each node Xi in some bottom-up order do
7: if Xi is a leaf then
8: for each frequency vector fpa(i) of Xpa(i) do

9: ComputeLi(M(G),n | fpa(i)) =
∏ Kpa(i)

k=1 CMN(Ki, fpa(i)k)
10: end for
11: else if Xi is an inner node then
12: for each frequency vector fiXi do
13: Compute Ci(M(G),n | fi) =

∏ Ki
l=1( fil/n)

fil
∏

j∈ch(i)L j(M(G),n | fi)
14: end for
15: initializeLi ≡ 0
16: for each non-negative Ki × Kpa(i) integer matrix F with entries summing to n do
17: Li(M(G),n | γ(F)) += Ci(M(G),n | ρ(F))
18: end for
19: else if Xi is a component tree root then
20: Compute Ci(M(G),n) =∑ fi

∏ Ki
l=1( fil/n)

fil
∏

j∈ch(i)L j(M(G),n | fi)
21: end if
22: end for
23: Compute C(M(G),n) =∏ i∈ch(∅)Ci(M(G),n)
24: Outpute PNML(xn |M(G)) = P̂(xn |M(G))/C(M(G),n)

Algorithm 3: The algorithm for computing PNML(xn |M(G)) for a Bayesian forest G.

other, in analogy to (42)–(45) we have

C
(
MG,n

) =
∏

i∈ch(∅)

Ci
(
MG,n

)
. (49)

Algorithm 3 collects all the above into a pseudocode.
The time complexity of this algorithm isO(nKiKpa(i)−1) for

each inner node,O(n(n+Ki)) for each leaf, andO(nKi−1) for
a component tree root of G. When all m′ < m inner nodes
are binary, it runs in O(m′n3), independently of the number
of values of the leaf nodes. This is polynomial with respect
to the sample size n, while applying (4) directly for comput-
ing C(M(G),n) requires exponential time. The order of the
polynomial depends on the attribute cardinalities: the algo-
rithm is exponential with respect to the number of values a
non-leaf variable can take.

Finally, note that we can speed up the algorithm when
G contains multiple copies of some subtree. Also we have
Ci/Li(MG,n | fi) = Ci/Li(MG,n | π(fi)) for any permuta-
tion π of the entries of fi. However, this does not lead to con-
siderable gain, at least in order of magnitude. Also, we can see
that in line 16 of the algorithm we enumerate all frequency
matrices F, while in line 17 we sum the same terms when-
ever the marginals of F are the same. Unfortunately, comput-
ing the number of non-negative integer matrices with given
marginals is a #P-hard problem already when the other ma-
trix dimension is fixed to 2, as proven in [33]. This suggests
that for this task there may not exist an algorithm that is
polynomial in all input quantities. The algorithm presented

here is polynomial as well in the sample size n as in the graph
size m. For attributes with relatively few values, the polyno-
mial is time tolerable.

6. CONCLUSION

The normalized maximum likelihood (NML) offers a uni-
versal, minimax optimal approach to statistical modeling. In
this paper, we have surveyed efficient algorithms for com-
puting the NML in the case of discrete datasets. The model
families used in our work are Bayesian networks of varying
complexity. The simplest model we discussed is the multino-
mial model family, which can be applied to problems related
to density estimation or discretization. In this case, the NML
can be computed in linear time. The same result also applies
to a network of independent multinomial variables, that is, a
Bayesian network with no arcs.

For the naive Bayes model family, the NML can be com-
puted in quadratic time. Models of this type have been
used extensively in clustering or classification domains with
good results. Finally, to be able to represent more com-
plex dependencies between the problem domain variables,
we also considered tree-structured Bayesian networks. We
showed how to compute the NML in this case in polyno-
mial time with respect to the sample size, but the order of
the polynomial depends on the number of values of the do-
main variables, which makes our result impractical for some
domains.
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The methods presented are especially suitable for prob-
lems in bioinformatics, which typically involve multi-
dimensional discrete datasets. Furthermore, unlike the
Bayesian methods, information-theoretic approaches such
as ours do not require a prior for the model parameters.
This is the most important aspect, as constructing a reason-
able parameter prior is a notoriously difficult problem, par-
ticularly in bioinformatical domains involving novel types
of data with little background knowledge. All in all, in-
formation theory has been found to offer a natural and
successful theoretical framework for biological applications
in general, which makes NML an appealing choice for
bioinformatics.

In the future, our plan is to extend the current work
to more complex cases such as general Bayesian networks,
which would allow the use of NML in even more in-
volved modeling tasks. Another natural area of future work
is to apply the methods of this paper to practical tasks
involving large discrete databases and compare the re-
sults to other approaches, such as those based on Bayesian
statistics.

APPENDIX

PROOFSOF THEOREMS

In this section, we provide detailed proofs of two theorems
presented in the paper.

Proof of Theorem 1 (multinomial recursion)

We start by proving the following lemma.

Lemma 3. For the tree function T(z) we have

zT′(z) = T(z)
1− T(z)

. (A.1)

Proof. A basic property of the tree function is the functional
equation T(z) = zeT(z) (see, e.g., [23]). Differentiating this
equation yields

T′(z) = eT(z) + T(z)T′(z)

zT′(z)
(
1− T(z)

) = zeT(z),
(A.2)

from which (A.1) follows.

Nowwe can proceed to the proof of the theorem.We start
by multiplying and differentiating (17) as follows:

z· d
dz

∑

n≥0

nn

n!
CMN(K ,n)zn = z·

∑

n≥1
n·n

n

n!
CMN(K ,n)zn−1

(A.3)

=
∑

n≥0
n·n

n

n!
CMN(K ,n)zn. (A.4)

On the other hand, by manipulating (18) in the same way, we
get

z· d
dz

1
(
1− T(z)

)K

= z·K
(
1− T(z)

)K+1 ·T′(z)
(A.5)

= K
(
1− T(z)

)K+1 ·
T(z)

1− T(z)
(A.6)

= K

⎛

⎝ 1
(
1− T(z)

)K+2 −
1

(
1− T(z)

)K+1

⎞

⎠ (A.7)

= K

(
∑

n≥0

nn

n!
CMN

(
K + 2,n

)
zn −

∑

n≥0

nn

n!
CMN

(
K + 1,n

)
zn
)

,

(A.8)

where (A.6) follows from Lemma 3. Comparing the coeffi-
cients of zn in (A.4) and (A.8), we get

n·CMN(K ,n) = K·(CMN(K + 2,n)−CMN(K + 1,n)
)
,
(A.9)

from which the theorem follows.

Proof of Theorem 2 (naive Bayes recursion)

We have

CNB(K0,n)

=
∑

h1+···+hK0=n

n!
h1! · · ·hK0 !

K0∏

k=1

(
hk
n

)hk m∏

i=1
CMN

(
Ki,hk

)

=
∑

h1+···+hK0=n

n!
nn

K0∏

k=1

hhkk
hk!

m∏

i=1
CMN

(
Ki,hk

)

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK0=r2

r1+r2=n

n!
nn

rr11
r1!

rr22
r2!

(
r1!
rr11

K∗∏

k=1

hhkk
hk!
· r2!
rr22

K0∏

k=K∗+1

hhkk
hk!

)

·
m∏

i=1

K∗∏

k=1
CMN

(
Ki,hk

) K0∏

k=K∗+1
CMN

(
Ki,hk

)

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK0=r2

r1+r2=n

n!
r1!r2!

(
r1
n

)r1( r2
n

)r2

·
(

r1!
h1! · · ·hK∗ !

K∗∏

k=1

(
hk
r1

)hk m∏

i=1
CMN

(
Ki,hk

)
)

·
(

r2!
hK∗+1! · · ·hK0 !

K0∏

k=K∗+1

(
hk
r2

)hk m∏

i=1
CMN

(
Ki,hk

))

=
∑

r1+r2=n

n!
r1!r2!

(
r1
n

)r1( r2
n

)r2
·CNB

(
K∗, r1

)·CNB
(
K0 − K∗, r2

)
,

(A.10)

and the proof follows.
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