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G + C composition at the third codon position (GC3) is widely reported to be correlated with synonymous codon usage bias.
However, no quantitative attempt has been made to compare the extent of this correlation among different genomes. Here, we
applied Shannon entropy from information theory to measure the degree of GC3 bias and that of synonymous codon usage bias
of each gene. The strength of the correlation of GC3 with synonymous codon usage bias, quantified by a correlation coefficient,
varied widely among bacterial genomes, ranging from —0.07 to 0.95. Previous analyses suggesting that the relationship between
GC3 and synonymous codon usage bias is independent of species are thus inconsistent with the more detailed analyses obtained

here for individual species.
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1. INTRODUCTION

Most amino acids can be encoded by more than one codon
(i.e., a triplet of nucleotides); such codons are described as
being synonymous and usually differ by one nucleotide in
the third position. In many organisms, alternative synony-
mous codons are not used with equal frequency. Various fac-
tors have been proposed to contribute to synonymous codon
usage bias, including G + C composition, replication strand
bias, and translational selection [1]. Here, we focus on the
contribution of G + C composition to synonymous codon
usage bias.

G + C composition has been widely reported to be cor-
related with synonymous codon usage bias [2—11]. However,
no quantitative attempt has been made to compare the ex-
tent of this correlation among different genomes. It would be
useful to be able to quantify the strength of the correlation
of G + C composition with synonymous codon usage bias
in such a way that the estimates could be compared among
genomes.

Different methods have been used to analyse the
relationships between G + C composition and synonymous
codon usage. Multivariate analysis methods, such as corre-
spondence analysis [5-7] and principal component analysis
[8], have been widely used to construct measures account-
ing for the largest fractions of the total variation in synony-

mous codon usage among genes. Carbone et al. [2, 3] used
the codon adaptation index as a “universal” measure of dom-
inating codon usage bias. The measures obtained by these
methods can be interpreted as having different features (e.g.,
G + C composition bias, replication strand bias, and transla-
tionally selected codon bias), depending on the gene groups
analyzed. Therefore, these methods would be useful for ex-
ploratory data analysis but not for the analysis of interest
here. By contrast, measures such as the “effective number of
codons” [10] and Shannon entropy from information theory
[11] are well defined; these measures can be regarded as rep-
resenting the degree of deviation from equal usage of synony-
mous codons, independently of the genes analyzed. Previous
analyses of the relationships between G + C composition and
synonymous codon usage bias using these measures have had
two problems. First, these measures of synonymous codon
usage bias have failed to take into account all three aspects of
amino acid usage (i.e., the number of different amino acids,
their relative frequency, and their codon degeneracy), and
therefore are affected by amino acid usage bias, which may
mask the effects directly linked to synonymous codon usage
bias. Second, previous analyses have compared the “degree”
of synonymous codon usage bias with G + C content [de-
fined as (G+C)/(A+ T+ G+ C)], and have therefore yielded
anonlinear U-shaped relationship (a gene with a very low or
very high G + C content has a high degree of synonymous
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codon usage bias) [9-11]; it is thus difficult to quantify the
nonlinear relationship.

To overcome the first of these problems, we use the
“weighted sum of relative entropy” (E,,) as a measure of syn-
onymous codon usage bias [12]. This measure takes into
account all three aspects of amino acid usage enumerated
above, and indeed is little affected by amino acid usage bi-
ases. To overcome the second problem, we compare the de-
gree of synonymous codon usage bias (E,,) with the degree of
G+ C content bias (entropy) instead of simply the G+ C con-
tent; this step can provide a linear relationship. The strength
of the linear relationship can be easily quantified by using a
correlation coefficient.

The approach of quantifying the strength of the corre-
lation of G + C composition with synonymous codon usage
bias by using the entropy and correlation coefficient is ap-
plied to bacterial species for which whole genome sequences
are available.

2. MATERIALS AND METHODS
2.1. Software

All analyses were conducted by using G-language genome
analysis environment software [13], available at http://www
.g-language.org. Graphs such as the histogram and scatter
plot were generated in the R statistical computing environ-
ment [14], available at http://www.r-project.org.

2.2, Sequences

We tested data from 371 bacterial genomes (see Additional
Table 1 for a comprehensive list (available online at http://
www2.bioinfo.ttck keio.ac.jp/genome/haruo/BSB_ST1.pdf)).
Complete genomes in GenBank format [15] were down-
loaded from the NCBI repository site (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria). Protein coding sequences containing
letters other than A, C, G, or T and those containing amino
acids with residues less than their degree of codon degener-
acy were discarded. From each coding sequence, start and
stop codons were excluded.

2.3. Analyses

2.3.1.  Measure of the degree of synonymous

codon usage bias

The relative frequency of the jth synonymous codon for the
ith amino acid (R;;) is defined as the ratio of the number of
occurrences of a codon to the sum of all synonymous codons:

Ni
Rij = ki 4 5 (1)
Zj:ﬂlij

where 7;; is the number of occurrences of the jth codon for
the ith amino acid, and k; is the degree of codon degeneracy
for the ith amino acid.

The degree of bias in synonymous codon usage of the
ith amino acid (H;) was quantified with a measure of un-
certainty (entropy) in Shannon’s information theory [16]:

ki
H,‘ = — Z Ri]‘ 10g2 R,‘j, (2)
j=1

H; can take values from 0 (maximum bias where only one
codon is used and all other synonyms are not present) to a
maximum value Himax = —k;((1/k;) log, (1/k;)) = log, k; (no
bias where alternative synonymous codons is used with equal
frequency; that is, for every j, R;; = 1/k;).

The relative entropy of the ith amino acid (E;) is defined
as the ratio of the observed entropy to the maximum possible
in the amino acid:

H; H;

= —, 3
Himax 10%2 ki ( )

E =

E; ranges from 0 (maximum bias when H; = 0) to 1 (no bias
when H; = log, k;).

To obtain an estimate of the overall bias in synonymous
codon usage of a gene, we combined estimates of the bias
from different amino acids, as follows. First, to take account
of the difference in the degree of codon degeneracy (k;) be-
tween different amino acids, we used the relative entropy (E;)
instead of the entropy (H;) as an estimate of the bias of each
amino acid. Second, to take account of the difference in rel-
ative frequency between different amino acids in the protein,
we calculated the sum of the relative entropy of each amino
acid weighted by its relative frequency in the protein. The
measure of synonymous codon usage bias, designated as the
“weighted sum of relative entropy” (E,,) [12], is given by

E, = Z w;E;, (4)

where s is the number of different amino acid species in the
protein and w; is the relative frequency of the ith amino acid
in the protein as a weighting factor. E,, ranges from 0 (maxi-
mum bias) to 1 (no bias).

2.3.2.  Measure of the degree of G + C composition bias

The entropy was calculated to quantify the degree of bias in
G + C composition at the first, second, and third codon po-
sitions of a gene (Hgc1, Hoea, and Hges, resp.),

Hp, = —plog, p — (1 - p)log,(1 - p), (5)

where p is the G+C content (defined as (G+C)/(A+T+G+C))
at the first, second, or third codon positions in the nucleotide
sequence (GCl1, GC2, or GC3).

The entropy (H) for G + C composition (and for usage
of two-fold degenerate codons; coding for asparagine, aspar-
tic acid, cysteine, glutamic acid, glutamine, histidine, lysine,
phenylalanine, or tyrosine) with values p and 1 — p is plotted
in Figure 1 as a function of p.
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FiGuUrE 1: Entropy (H) of G + C composition and usage of two fold
degenerate codons with values p and 1 — p.

2.3.3.  Estimation of the correlation of G + C
composition with synonymous codon
usage bias

Spearman’s rank correlation coefficient (r) was calculated
to quantify the strength of the correlation between G + C
composition bias (Hgc1, Hgez, and Hges) and synonymous
codon usage bias (E,),
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where x, is the rank of the x-axis value (Hgc1, Hgca, or Hoes)
for the gth gene, y, is the rank of the y-axis value (E,) for
the gth gene, and m is the number of genes in the genome.
The r value can vary from —1 (perfect negative correlation)
through 0 (no correlation) to +1 (perfect positive correla-
tion).

3. RESULTS

3.1. Correlation of G + C composition with
synonymous codon usage bias (r value)

We investigated the correlation between the degree of G + C
composition bias (Hgci, Hgea, and Hges) and that of syn-
onymous codon usage bias (E,,) within each genome.

Figure 2 shows scatter plots of E,, plotted against Hgc,
Hgez, and Hges with Geobacter metallireducens GS-15 genes
and with Saccharophagus degradans 2—40 genes as examples
and the Spearman’s rank correlation coefficient (r) calculated
from each plot. In G. metallireducens, the value of E,, was

much better correlated with Hges (Figure 2(c)) than with
Hger (Figure 2(a)), or Hgey (Figure 2(b)), indicating that
GC3 contributed more to synonymous codon usage bias than
GCl and GC2. In S. degradans, the value of E,, was not cor-
related with Hgc; (Figure 2(d)), Hgea (Figure 2(e)), or Hges
(Figure 2(f)), indicating that neither GC1, nor GC2 nor GC3
contributed to synonymous codon usage bias.

To compare the contributions of GC1, GC2, and GC3 to
synonymous codon usage bias, we produced pairwise scatter
plots of the r values of Hgc1, Hgea, and Hges with E,, for 371
genomes (Figure 3).

In the scatter plot of the r values of Hgcs (y-axis) plot-
ted against those of Hgc; (x-axis) (Figure 3(a)), 362 points
(97.6% of the total) are on the upper left of the line y = x,
indicating that GC3 contributed more to synonymous codon
usage bias than did GC1 in most of the genomes analyzed.

In the scatter plot of the r values of Hgcs (y-axis) plot-
ted against those of Hgcy (x-axis) (Figure 3(b)), 367 points
(98.9% of the total) are on the upper left of the line y = x,
indicating that GC3 contributed more to synonymous codon
usage bias than did GC2 in most genomes analyzed.

In the scatter plot of the r values of Hgc (y-axis) plotted
against those of Hgc, (x-axis) (Figure 3(c)), the scatter plot
displays a diffuse distribution of points: 186 points (50.1%
of the total) are on the upper left of the line y = x, in-
dicating that the relative contributions of GC1 and GC2 to
synonymous codon usage bias varied widely from genome to
genome.

We constructed histograms showing the distribution of
r values of Hgci, Hgea, and Hges with E,, for 371 bacte-
rial genomes (Figure 4). The r values of Hgc (Figure 4(a))
and Hgc, (Figure 4(b)) were distributed evenly between pos-
itive and negative values, whereas those of Hgcs (Figure 4(c))
were distributed towards positive values. The ranges [min-
imum, maximum] of the r values of Hgci, Hgeo, and
Hges were [—0.51,0.46], [—0.28,0.39], and [-0.07,0.95],
respectively. The r values of Hge (Figure 4(a)) and Hgeo
(Figure 4(b)) exhibited a monomodal distribution, whereas
those of Hgcs (Figure 4(c)) exhibited a multimodal distribu-
tion.

3.2. Correlation of r value with genomic features

To investigate whether the correlation of GC3 with synony-
mous codon usage bias (the r value of Hgcs versus E,,) was
related to species characteristics, we compared the r values
with genomic features such as genomic G + C content and
tRNA gene copy number. Among the 371 genomes analyzed
here, genomic G + C content ranged from 23% to 73% and
tRNA gene copy number varied from 28 to 145.

We constructed scatter plots of the r values of Hgcs with
E,, plotted against genomic G + C content and tRNA gene
copy number for 371 genomes (Figure 5). The relationship
between the r value of Hgcs and the tRNA gene copy number
was unclear (Figure 5(b)). In contrast, the r values of Hgcs
tended to be high in G + C-poor or G + C-rich genomes, re-
vealing a nonlinear relationship between the r value of Hgcs
and genomic G+ C content (Figure 5(a)). The highest r value
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FIGURE 2: Scatter plots of E,, plotted against (a) Hgci, (b)Hgea, and (C) Hges for Geobacter metallireducens GS-15 genes and against (d)
Haci, (€) Hoea, and (f) Hees for Saccharophagus degradans 2—40 genes. The extent of the correlation between Hge1, Haeo, and Hges and E,,

is represented by Spearman’s rank correlation coefficient (r).

of Hges (0.95) was found in G. metallireducens, with a ge-
nomic G+C content of 60% (Figure 2(c)). The lowest r value
of Hges (—0.07) was found in S. degradans, with a genomic
G + C content of 46% (Figure 2(f)). The mean and standard

deviation of the r values of Hgcs for G + C-poor bacteria
(with genomic G + C contents less than 40%) were 0.58 and
0.12, respectively. The corresponding values for G + C-rich
bacteria (with genomic G + C contents greater than 60%)
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FIGURE 3: Pairwise scatter plots of the r values of Hgci, Hge, and
Hgcs with E,, for 371 bacterial genomes. Comparison of the corre-
lation with E,, of (a) Hgcs and Hgey, (b) Hges and Hges, and (c)
Hgci and Hges.
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FIGURE 4: Histograms of the distribution of r values of (a) Hgcy, (b)
Haea, and (¢) Hges with E,, for 371 bacterial genomes.

were 0.86 and 0.04. Thus, the r values of Hgcs for G + C-
poor bacteria tended to be lower than those for G + C-rich
bacteria.

4. DISCUSSION

Other investigators have reported that G + C composition is
correlated with synonymous codon usage bias in many or-
ganisms. However, no quantitative attempt has been made
to compare the extent of this correlation among different
genomes. Here, we quantified the strength of the correlation
of G+ C composition bias (Hgc1, Hgez, and Hges) with syn-
onymous codon usage bias (E,,) by using a correlation coeffi-
cient (r). This approach allowed us to quantitatively compare
the strength of this correlation among different genomes.
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FIGURE 5: Scatter plots of the r values of Hgcs with E,, plotted against (a) genomic G+ C content and (b) tRNA gene number for 371 bacterial

genomes.

In a previous analysis of the relationships between G + C
composition and synonymous codon usage bias, Wan et al.
[9] stated that “GC3 was the most important factor in codon
bias among GC, GC1, GC2, and GC3.” This is quantitatively
supported by the pairwise comparison of the r values of
Hcci, Hoe, and Hges (Figure 3). However, the statement by
Wan et al. that “GC3 is the key factor driving synonymous
codon usage and that this mechanism is independent of
species” differs from our conclusion that the strength of the
correlation of GC3 with synonymous codon usage bias (the
r value of Hgcs) varies widely among species (Figure 4(c)).
This discordance appears to have arisen because Wan et al.
combined the genes from different genomes into a single
dataset for their analysis. This analysis of combined data
from different genomes masks the presence of genomes in
which the correlation of GC3 with synonymous codon usage
bias is negligible (such as that of S. degradans; Figure 2(f));
the results are thus inconsistent with those of the more de-
tailed analyses obtained here for individual genomes.

Three factors, G+ C composition, replication strand bias,
and translational selection, are well documented to shape
synonymous codon usage bias [1].

First, in bacteria with extreme genomic G + C composi-
tions (either G + C-rich or A + T-rich), synonymous codon
usage could be dominated by strong mutational bias (toward
G+ Cor A+T)[17, 18]. The data in Figure 5(a) indicate
that, although genomic G+ C content was nonlinearly corre-
lated with the r value of Hgcs, there are some exceptions; for
example, Nanoarchaeum equitans Kin4-M and Mycoplasma
genitalium G37 had identical genomic G + C contents of
32% but very different r values of Hgcs (0.34 and 0.87, resp.),
and Thermococcus kodakarensis KOD1 had a genomic G + C
content of around 50% but a high r value of Hgcs (0.86).
The existence of the outliers suggests that, although muta-

tional biases have a major influence on the correlation of
GC3 with synonymous codon usage bias, other evolutionary
factors may play a part. For example, horizontal gene trans-
fer among bacteria with different genomic G + C content
can contribute to intragenomic variation in G + C content
[19, 20].

Second, the spirochaete Borrelia burgdorferi exhibits a
strong base usage skew between leading and lagging strands
of replication (generally inferred as reflecting strand-specific
mutational bias): genes on the leading strand tend to pref-
erentially use G- or T-ending codons [21]. The r values of
Hgcs for genes on the leading and lagging strands are similar
(0.65 and 0.63, resp.). This suggests that strand bias has little
influence on the correlation of GC3 with synonymous codon
usage bias in B. burgdorferi.

Third, in bacteria with more tRNA genes, synonymous
codon usage could be subject to stronger translational selec-
tion [22]. Figure 5(b) shows that tRNA gene copy number
was not correlated with the r value of Hgcs. This suggests
that translational selection has little influence on the corre-
lation of GC3 with synonymous codon usage bias. Sharp et
al. [22] showed that the S value as a measure of translation-
ally selected codon usage bias is highly correlated with tRNA
gene copy number but is not correlated with genomic G + C
content. Thus, the r value of Hgcs can be used as a measure
complementary to the S value.

The most accepted hypothesis for the unequal usage of
synonymous codons in bacterial genomes is that the unequal
usage is the result of a very complex balance among different
evolutionary forces (mutation and selection) [23]. The com-
bined use of the r value and other methods (e.g., the S value)
will improve our understanding of the relative contributions
of different evolutionary forces to synonymous codon usage
bias.
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ABBREVIATIONS
A: Adenine

T: Thymine
G: Guanine
C: Cytosine

GCl1: G + C content at the first codon position
GC2: G + C content at the second codon position
GC3: G + C content at the third codon position
Hgci: Entropy of GC1

Hgc,: Entropy of GC2

Hgcs: Entropy of GC3

E,: Weighted sum of relative entropy

r: Spearman’s rank correlation coefficient
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