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We describe initial results of miRNA sequence analysis with the optimal symbol compression ratio (OSCR) algorithm and recast
this grammar inference algorithm as an improved minimum description length (MDL) learning tool: MDLcompress. We apply this
tool to explore the relationship between miRNAs, single nucleotide polymorphisms (SNPs), and breast cancer. Our new algorithm
outperforms other grammar-based coding methods, such as DNA Sequitur, while retaining a two-part code that highlights bio-
logically significant phrases. The deep recursion of MDLcompress, together with its explicit two-part coding, enables it to identify
biologically meaningful sequence without needlessly restrictive priors. The ability to quantify cost in bits for phrases in the MDL
model allows prediction of regions where SNPs may have the most impact on biological activity. MDLcompress improves on our
previous algorithm in execution time through an innovative data structure, and in specificity of motif detection (compression)
through improved heuristics. An MDLcompress analysis of 144 over expressed genes from the breast cancer cell line BT474 has
identified novel motifs, including potential microRNA (miRNA) binding sites that are candidates for experimental validation.
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1. INTRODUCTION

The discovery of RNA interference (RNAi) [1] and certain
of its endogenous mediators, the microRNAs (miRNAs), has
catalyzed a revolution in biology and medicine [2, 3]. MiR-
NAs are transcribed as long (~1000nt) “pri-miRNAs,” cut
into small (~70nt) stem-loop “precursors,” exported into
the cytoplasm of cells, and processed into short (~20nt)
single-stranded RNAs, which interact with multiple proteins
to form a superstructure known as the RNA-induced silenc-
ing complex (RISC). The RISC binds to sequences in the
3’untranslated region (3'UTR) of mature messenger RNA
(mRNA) that are partially complementary to the miRNA.
Binding of the RISC to a target mRNA induces inhibition
of protein translation by either (i) inducing cleavage of the
mRNA or (ii) blocking translation of the mRNA. MiRNAs
therefore represent a nonclassical mechanism for regulation
of gene expression.

MiRNAs can be potent mediators of gene expression, and
this fact has lead to large-scale searches for the full com-
plement of miRNAs and the genes that they regulate. Al-

though it is believed that all information about a miRNA’s
targets is encoded in its sequence, attempts to identify targets
by informatics methods have met with limited success, and
the requirements on a target site for a miRNA to regulate a
cognate mRNA are not fully understood. To date, over 500
distinct miRNAs have been discovered in humans, and esti-
mates of the total number of human miRNAs range well into
the thousands. Complex algorithms to predict which specific
genes these miRNAs regulate often yield dozens or hundreds
of distinct potential targets for each miRNA [4-6]. Because
of the technical difficulty of testing, all potential targets of a
single miRNA, there are few, if any, miRNAs whose activities
have been thoroughly characterized in mammalian cells. This
problem is of singular importance because of evidence sug-
gesting links between miRNA expression and human disease,
for example chronic lymphocytic leukemia and lung cancer
[7, 8]; however, the genes affected by these changes in miRNA
expression remain unknown.

MiRNA genes themselves were opaque to standard in-
formatics methods for decades in part because they are
primarily localized to regions of the genome that do not
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Ficure 1: The OSCR algorithm. Phrases that recursively contribute most to sequence compression are added to the model first. The motif
AGTG is the first selected and added to OSCR’s MDL model. A longest match algorithm would not call out this motif.

code for protein. Informatics techniques designed to iden-
tify protein-coding sequences, transcription factors, or other
known classes of sequence did not resolve the distinctive sig-
natures of miRNA hairpin loops or their target sites in the
3"UTRs of protein-coding genes. In this sense, apart from
comparative genomics, sequence analysis methods tend to be
best at identifying classes of sequence whose biological signif-
icance is already known.

Minimum description length (MDL) principles [9] of-
fer a general approach to de novo identification of biologi-
cally meaningful sequence information with a minimum of
assumptions, biases, or prejudices. Their advantage is that
they address explicitly the cost capability for data analysis
without over fitting. The challenge of incorporating MDL
into sequence analysis lies in (a) quantification of appropri-
ate model costs and (b) tractable computation of model in-
ference. A grammar inference algorithm that infers a two-
part minimum description length code was introduced in
[10], applied to the problem of information security in [11]
and to miRNA target detection in [12]. This optimal symbol
compression ratio (OSCR) algorithm produces “meaningful
models” in an MDL sense while achieving a combination of
model and data whose descriptive size together represents an
estimate of the Kolmogorov complexity of the dataset [13].
We anticipate that this capacity for capturing the regularity
of a data set within compact, meaningful models will have
wide application to DNA sequence analysis.

MDL principles were successfully applied to segment
DNA into coding, noncoding, and other regions in [14].
The normalized maximum likelihood model (an MDL al-
gorithm) [15] was used to derive a regression that also
achieves near state-of-the-art compression. Further MDL-
related approaches include the “greedy offline”—GREEDY—
algorithm [16] and DNA Sequitur [17, 18]. While these

grammar-based codes do not achieve the compression of
DNACompress [19] (see [20] for a comparison and addi-
tional approach using dynamic programming), the structure
of these algorithms is attractive for identifying biologically
meaningful phrases. The compression achieved by our algo-
rithm exceeds that of DNA Sequitur while retaining a two-
part code that highlights biologically significant phrases. Dif-
ferences between MDLcompress and GREEDY will be dis-
cussed later. The deep recursion of our approach combined
with its two-part coding makes our algorithm uniquely able
to identify biologically meaningful sequence de novo with a
minimal set of assumptions. In processing a gene transcript,
we selectively identify sequences that are (i) short but oc-
cur frequently (e.g., codons, each 3 nucleotides) and (ii) se-
quences that are relatively long but occur only a small num-
ber of times (e.g., miRNA target sites, each ~20 nucleotides
or more). An example is shown in Figure 1, where given
the input sequence shown, OSCR highlights the short motif
AGTG that occurs five times, over a longer sequence that oc-
curs only twice. Other model inference strategies would by-
pass by this short motif.

In this paper, we describe initial results of miRNA anal-
ysis using OSCR and introduce improvements to OSCR that
reduce execution time and enhance its capacity to iden-
tify biologically meaningful sequence. These modifications,
some of which were first introduced in [21], retain the deep
recursion of the original algorithm but exploit novel data
structures that make more efficient use of time and mem-
ory by gathering phrase statistics in a single pass and subse-
quently selecting multiple codebook phrases. Our data struc-
ture incorporates candidate phrase frequency information
and pointers identifying location of candidate phrases in
the sequence, enabling efficient computation. MDL model
inference refinement is achieved by improving heuristics,
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000000000000 - - - 000
000000000000 - - - 001
000000000000 - - - 010
000000000000 - - - 011

1111111111111 - - - 10
1111111111111 - - - 11
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FIGURE 2: Two-part representations of a 128-bit string. As the length of the model increases, the size of the set including the target string

decreases.

harnessing redundancies associated with palindrome data,
and taking advantage of local sequence similarity. Since it
now employs a suite of heuristics and MDL compression
methods, including but not limited to the original symbol
compression ratio (SCR) measure, we refer to this improved
algorithm as MDLcompress, reflecting its ability to apply
MDL principles to infer grammar models through multiple
heuristics.

We hypothesized that MDL models could discover bio-
logically meaningful phrases within genes, and after sum-
marizing briefly our previous work with OSCR, we present
here the outcome of an MDLcompress analysis of 144 genes
overexpressed in the breast cancer cell line, BT474. Our algo-
rithm has identified novel motifs including potential miRNA
binding sites that are being considered for in vitro validation
studies. We further introduce a “bits per nucleotide” MDL
weighting from MDLcompress models and their inherent bi-
ologically meaningful phrases. Using this weighting, “suscep-
tible” areas of sequence can be identified where an SNP dis-
proportionately affects MDL cost, indicating an atypical and
potentially pathological change in genomic information con-
tent.

2. MINIMUM DESCRIPTION LENGTH (MDL)
PRINCIPLES AND KOLMOGOROV COMPLEXITY

MDL is deeply related to Kolmogorov complexity, a measure
of descriptive complexity contained in an object. It refers to
the minimum length / of a program such that a universal
computer can generate a specific sequence [13]. Kolmogorov
complexity can be described as follows, where ¢ represents a
universal computer, p represents a program, and x represents
a string:

Kyx) = | min 1(p)}. ()

As discussed in [22], an MDL decomposition of a binary
string x considering finite set models can be separated into
two parts,

Ky(x) = {K(S) +log, ISI}, (2)

where again K, (x) is the Kolmogorov complexity for string x
on universal computer ¢. S represents a finite set of which x
is a typical (equally likely) element. The minimum possible
sum of descriptive cost for set S (the model cost encompass-
ing all regularity in the string) and the log of the sets cardi-
nality (the required cost to enumerate the equally likely set
elements) correspond to an MDL two-part description for
string x, a model portion that describes all redundancy in the
string, and a data portion that uses the model to define the
specific string. Figure 2 shows how these concepts are mani-
fest in three two-part representations of the 128 binary string
101010 - - - 10. In this representation, the model is defined in
English language text that defines a set, and the log, of the
number of elements in the defined set is the data portion
of the description. One representation would be to identify
this string by an index of all possible 128-bit strings. This in-
volves a very small model description, but a data description
of 128 bits, so no compression of descriptive cost is achieved.
A second possibility is to use additional model description to
restrict the set size to contain only strings with equal num-
ber of ones and zeros, which reduces the cardinality of the set
by a few bits. A more promising approach will use still more
model description to identify the set of alternating pattern of
ones and zeros that could contain only two strings. Among
all possible two-part descriptions of this string the combina-
tion that minimizes the two-part descriptive cost is the MDL
description.

This example points out a major difference between
Shannon entropy and Kolmogorov complexity. The first-
order empirical entropy of the string 101010 - - - 10 is very
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FiGure 3: This figure shows the Kolmogorov structure function. As
the model size (k) is allowed to increase, the size of the set (n) in-
cluding string x with an equally likely probability decreases. k* in-
dicates the value of the Kolmogorov minimum sufficient statistic.

high, since the numbers of ones and zeros are equal. How-
ever, intuitively the regularity of the string makes it seem
strange to call it random. By considering the model cost, as
well as the data costs of a string, MDL theory provides a for-
mal methodology that justifies objectively classifying a string
as something other than a member of the set of all 128 bit
binary. These concepts can be extended beyond the class of
models that can be constructed using finite sets to all com-
putable functions [22].

The size of the model (the number of bits allocated to
spelling out the members of set S) is related to the Kol-
mogorov structure function, & (see [23]). h defines the small-
est set, S, that can be described in at most k bits and contains
a given string x of length #,

he(x" | n) = min

log, |S|T. 3
p:l(p)<k,U(p,n):S{ g | [} (3)

Cover [23] has interpreted this function as a minimum suffi-
cient statistic, which has great significance from an MDL per-
spective. This concept is shown graphically in Figure 3. The
cardinality of the set containing string x of length # starts out
as equal to n when k = 0 bits is used to describe set S (restrict
its size). As k increases, the cardinality of the set containing
string x can be reduced until a critical value k* is reached
which is referred to as the Kolmogorov minimum sufficient
statistic, or algorithmic minimum sufficient statistic [22]. At
k*, the size of the two-part description of string x equals
K, (x) within a constant. Increasing k beyond k* will con-
tinue to make possible a two-part code of size K,(x), even-
tually resulting in a description of a set containing the single
element x. However, beyond k*, the increase in the descrip-
tive cost of the model, while reducing the cardinality of the
set to which x belongs, does not decrease the string’s overall
descriptive cost.

The optimal symbol compression ratio (OSCR) algo-
rithm is a grammar inference algorithm that infers a two-part

minimum description length code and an estimate of the al-
gorithmic minimum sufficient statistic [10, 11]. OSCR pro-
duces “meaningful models” in an MDL sense, while achiev-
ing a combination of model plus data whose descriptive size
together estimate the Kolmogorov complexity of the data set.
OSCR’s capability for capturing the regularity of a data set
into compact, meaningful models has wide application for
sequence analysis. The deep recursion of our approach com-
bined with its two-part coding nature makes our algorithm
uniquely able to identify meaningful sequences without lim-
iting assumptions.

The entropy of a distribution of symbols defines the av-
erage per symbol compression bound in bits per symbol for
a prefix free code. Huffman coding and other strategies can
produce an instantaneous code approaching the entropy in
the limit of infinite message length when the distribution is
known. In the absence of knowledge of the model, one way
to proceed is to measure the empirical entropy of the string.
However, empirical entropy is a function of the partition and
depends on what substrings are grouped together to be con-
sidered symbols. Our goal is to optimize the partition (the
number of symbols, their length, and distribution) of a string
such that the compression bound for an instantaneous code,
(the total number of encoded symbols R time entropy Hy)
plus the codebook size is minimized. We define the approx-
imate model descriptive cost M to be the sum of the lengths
of unique symbols, and total descriptive cost D, as follows:

MEZI,',

While not exact (symbol delimiting “comma costs” are ig-
nored in the model, while possible redundancy advantages
are not considered either), these definitions provide an ap-
proximate means of breaking out MDL costs on a per symbol
basis. The analysis that follows can easily be adapted to other
model cost assumptions.

D,=M+R-H, (4)

2.1. Symbol compression ratio

In seeking to partition the string so as to minimize the total
string descriptive length D,, we consider the length that the
presence of each symbol adds to the total descriptive length
and the amount of coverage of total string length L that it
provides. Since the probability of each symbol, p;, is a func-
tion of the number of repetitions of each symbol, it can be
easily shown that the empirical entropy for this distribution
reduces to

H; =log,(R) — % Z rilog, (ri). (5)

Thus, we have

D, = Rlog,(R) + Z l; — rilog, (r;), with

1

~ (6)
Rlog,(R) = Z rilog,(R) = log,(R) Z Ti

where logz(ﬁ) is a constant for a given partition of sym-
bols. Computing this estimate based on the partition in hand
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SCR versus symbol length for various number of repeats
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FIGURE 4: SCR versus symbol length for 1024-bit string.

enables a per-symbol formulation for D, and results in a con-
servative approximation for Rlog, (R) over the likely range of
R. The per-symbol descriptive cost can now be formulated:

d; = ri[ log,(R) — log, (r;)] + L. (7)

Thus, we have a heuristic that conservatively estimates the
descriptive cost of any possible symbol in a string considering
both model and data (entropy) costs. A measure of the com-
pression ratio for a particular symbol is simply the descrip-
tive length of the string divided by the length of the string
“covered” by this symbol. We define the symbol compression
ratio (SCR) as

di _ ri[logy(R) —log, (ri)] +1;

A=
L lir;

(8)

This heuristic describes the “compression work” a candidate
symbol will perform in a possible partition of a string. Ex-
amining SCR in Figure 4, it is clear that good symbol com-
pression ratio arises in general when symbols are long and
repeated often. But clearly, selection of some symbols as part
of the partition is preferred to others. Figure 4 shows how
symbol compression ratio varies with the length of symbols
and number of repetitions for a 1024 bit string.

3. OSCRALGORITHM

The optimal symbol compression ratio (OSCR) algorithm
forms a partition of string S into symbols that have the best
symbol compression ratio (SCR) among possible symbols
contained in S. The algorithm is as follows.

(1) Starting with an initial alphabet, form a list of sub-
strings contained in S, possibly with user-defined con-
straints on minimum frequency and/or maximum
length, and note the frequency of each substring.

String x= a_rose_is_a_rose_is_a_rose

OSCR statistics: SCR based on length and frequency of phrase

Cafs [ l7)[r[s]lo]s][s]sf[e]3][if2]
|:3ER=2673=23
=2
Ezl . R=26-3(5) =11
SCR = 1.023 =<0-— =
DR =6
r=3
Ezl SCR = 0.5 R=26-2(6) =14
E_3| 1=7
— r=2
|:2 SCR =0.7143

FIGURE 5: OSCR example.

(2) Calculate the SCR for all substrings. Select the sub-
string from this set with the smallest SCR and add it
to the model M.

(3) Replace all occurrences of the newly added substring
with a unique character.

(4) Repeat steps 1 through 3 until no suitable substrings
are found.

(5) When a full partition has been constructed, use Huff-
man coding or another coding strategy to encode the
distribution, p, of symbols.

The following comments apply.

(1) This algorithm progressively adds symbols that do the
most compression “work” among all the candidates
to the code space. Replacement of these symbols left-
most-first will alter the frequency of remaining sym-
bols.

(2) Aless exhaustive search for the optimal SCR candidate
is possible by concentrating on the tree branches that
dominate the string or searching only certain phrase
sizes.

(3) The initial alphabet of terminals is user supplied.

3.1. Example

Consider the phrase “a rose is a rose is a rose” with ASCII
characters as the initial alphabet. The initial tree statistics and
A calculations provide the metrics shown in Figure 5. The
numbers across the top indicate the frequency of each sym-
bol, while the numbers along the left indicate the frequency
of phrases.

Here we see that the initial string consists of seven ter-
minals {a,_,7,0,s,¢,i}. Expanding the tree with substrings
beginning with the terminal a shows that there are 3 occur-
rences of substrings:

{a,a_,a_r,a_ro,a_ros,a_rose}, (9)

but only 2 occurrences of longer substrings, for each of which
A values consequently increase, leaving the phrase {a_rose}
the candidate with the smallest . Here we see the unique
nature of the A heuristic, which does not choose necessarily
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6
Grammar Model (set)
Sy —> a-rose S; — a_rose f(S1) =1
S, —> -isS) .
S S S$) =2
S —> 55, 2 —> 1891 f(S2)
Equally likely musings:

$15,S, a_rose_is_a_rose_is_a_rose
TypicalSet = 1 $,5,S; | = 4 -is_a_rose_a_rose_is_a_rose
$,8,8; _is_a_rose_is_a_rose_a_rose

F1Gure 6: OSCR grammar example model summary.

the most frequently repeating symbol, or the longest match
but rather a combination of length and redundancy. A sec-
ond iteration of the algorithm produces the model described
in Figure 6. Our grammar rules enable the construction of a
typical set of strings where each phrase has frequency shown
the model block of Figure 6. One can think of MDL prin-
ciples applied in this way as analogous to the problem of
finding an optimal compression code for a given dataset x
with the added constraint that the descriptive cost of the
codebook must also be considered. Thus, the cost of send-
ing “priors” (a codebook or other modeling information)
is considered in the total descriptive cost in addition to
the descriptive cost of the final compressed data given the
model.

The challenge of incorporating MDL in sequence analy-
sis lies in the quantification of appropriate model costs and
tractable computation of model inference. Hence, OSCR has
been improved and optimized through additional heuristics
and a streamlined architecture and renamed MDLcompress,
which will be described in detail in later sections. MDLcom-
press forms an estimate of the strings algorithmic minimum
sufficient statistic by adding bits to the model until no ad-
ditional compression can be realized. MDLcompress retains
the deep recursion of the original algorithm but improve
speed and memory use through novel data structures that
allow gathering of phrase statistics in a single pass and subse-
quent selection of multiple codebook phrases with minimal
computation.

MDLcompress and OSCR are not alone in the grammar
inference domain. GREEDY, developed by Apostolico and
Lonardi [16], is similar to MDLcompress and OSCR, but dif-
fer in three major areas.

(1) MDLcompress is deeply recursive in that the algorithm
does not remove phrases from consideration for com-
pression after they have been added to the model. The
“loss of compressibility” inherent in adding a phrase
to the model was one of the motivations of developing
the SCR heuristic—preventing a “too greedy” absorp-
tion of phases from preventing optimal total compres-
sion. With MDLcompress, since we look in the model
as well for phrases to compress, we find that generally
the total compression heuristic at each phase gives the
best performance as will be discussed later.

(2) MDLcompress was designed with the express intent of
estimating the algorithmic minimum sufficient statis-

tic, and thus has more stringent separation of model
and data costs and more specific model cost calcula-
tions resulting in greater specificity.

(3) As described in [21] and will be discussed in later
sections, the computational architecture of MDLcom-
press differs from the suffix tree with counts architec-
ture of GREEDY. Specifically, MDLcompress gathers
statistics in a single pass and then updates the data
structure and statistics after selecting each phrase as
opposed GREEDY’s practice of reforming the suffix
tree with counts data structure at each iteration.

Another comparable grammar-based code is Sequitur, a
linear time grammar inference algorithm [17, 18]. In this pa-
per, we show MDLcompress to exceed Sequitur’s ability to
compress. However, it does not match Sequitur’s linear run
time performance.

4. MIRNA TARGET DETECTION USING OSCR

In [12], we described our initial application of the OSCR al-
gorithm to the identification of miRNA target sites. We se-
lected a family of genes from Drosophila (fruit fly) that con-
tain in their 3'UTRs conserved sequence structures previ-
ously described by Lai [24]. These authors observed that
a highly-conserved 8-nucleotide sequence motif, known as
a K-box (sense = 5° cUGUGAUa 3'; antisense = 5" uAU-
CACAg) and located in the 3'UTRs of Brd and bHLH gene
families, exhibited strong complementarity to several fly
miRNAs, among them miR-11. These motifs exhibited a role
in posttranscriptional regulation that was at the time unex-
plained.

The OSCR algorithm constructed a phrasebook consist-
ing of nine motifs, listed in Figure 7 (top) to optimally par-
tition the adjacent set of sequences, in which the motifs
are color coded. The OSCR algorithm correctly identified
the most redundant antisense sequence (AUCACA) from the
several examples it was presented.

The input data for this analysis consists of 19 sequences,
each 18 nucleotides in length (Figure 7). From these se-
quences, OSCR generated a model consisting of grammar
“variables” S; through S4 that map to individual nucleotides
(grammar “terminals”), the variable S5 that maps to the nu-
cleotide sequence, AUCACA, and four shorter motifs S¢—So.
The phrase S5 turns out to be a putative target of several dif-
ferent miRNAs, including miR-2a, miR-2b, miR-6, miR-13a,
miR-13b, and miR-11. OSCR identified as S¢ a 2 nucleotide
sequence (5" GU 3') that is located immediately downstream
of the K-box motif. The new consensus sequence would read
5" AUCACAGU 3’ and has a greater degree of homology
to miR-6 and miR-11 than to other D. melanogaster miR-
NAs. In vivo studies performed subsequent to the original
Lai paper demonstrated the specificity of miR-11 activity
on the Bob-A,B,C, E(spl)ma, E(spl)m4, and E(spl)md genes
[25].

In a separate analysis, we applied OSCR to the sequence
of an individual fruit fly gene transcript, BobA (accession
NM 080348; Figure 7, bottom). Only the BobA transcript
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OSCR analysis of Brd family and bHIH repressor

* Motif: AUCACA first phrase added
o GUU second phrase added
e CU, AU, and GU also called out

—

BobA gene from Drosophila melanogaster with
K-box and GY-box motifs highlighted. the
BobA gene is potentially regulated by miR-11
(K-box specificity) and miR-7 (GY-box
specificity). For clarity of exposition, stop and
start codons underlined in red.

\

SS—G
S;—U

S35 —>C
Ss—A

85 — AUCACA
S¢ — GUU

S7 —CU

Ss —> AU

S9 —>GU

1 aacaguucuccauccgagcagaticallaaguiaaccaacclgcaaaauguucaccgaaaccg
61 cucuuguuuccaacuucaauggagugacagagaagaaaucucuuaccggegecuccacca

121
181
241
301
361
421
481
541

601 ggaaagaaaacaau

accugaagaagcugcugaagaccalicaagaaggucuucaagaacuccaagecuucgaagg
agauuccgauccccaacaucaucuiacucuugcaauacugaggaggageaccagaauugge
ucaacgaacaacuggaggccauggcaauccaucuucacugaguucuucugggacauccce
CUCCaUCgagUalCugUgaugUgacccgaucaaaagguclauaaaucggeacuccggeuu
uaauauccaacugugaugacgagaacacaagacugacugacuugugugccuuggagguga
caaaguucgucgccucugccaacuguacauaucaaacuagcugcuaaaaugucuucaau
augcuuuaauguagucuaaguuaguautuaucauugucuuccautuaguuuaagaaaaucau
ugucuuccauguuuguuuguuaggguaaaaaaaacuagculiaagaauaaaaaucccucgc

FIGURE 7: Motif analysis of 19 sequences each of which is believed to contain a single target site for miR-11 from fruit fly. (Top) OSCR adds
the variable Ss to its MDL codebook, the K-box motif, which has been shown to be a miRNA target site for miR-11. (Bottom) Full sequence
of BobA gene transcript with K-box and GY box motifs underlined in blue text. The K-box motif (CUGUGAUG) is a target site for miR-11

and the GY-box motif (UGUCUUCCAU) is a target site for miR-7.

itself entered this second analysis, which was performed
independently of the multisequence analysis described in the
paragraph above. The sense sequence of BobA is displayed
in Figure 2 with the 5'UTR indicated in green; the 237 nu-
cleotides (79 codons) of the coding sequence in red; and
the 3’UTR in blue. OSCR identified the underlined motifs,
(cugugaug) and (ugucuuccau). These two motifs turn out
not only to be conserved among multiple Drosophila sub-
species, but also to be targets of two distinct miRNAs: the K-
box motif (cugugaug) is a target of miR-11 and the GY-box
(ugucuuccau) a target of miR-7. Although we did not per-
form OSCR analysis on any additional genes, this motif had
been identified previously in several 3" UTRs, including those
of BobA, E(spl)m3, E(spl)m4, E(spl)m5, and Tom [23, 24].
The BobA gene is particularly sensitive to miR-7. Mutants
of the BobA gene with base-pair disrupting substitutions at
both sites of interaction with miR-7 yielded nearly complete
loss of miR-7 activity [25] both in vivo and in vitro. These
observations are consistent with studies from [26, 27] that
reveal specific sequence-matching requirements for effective
miRNA activity in vitro.

In summary, the OSCR algorithm identified (i) a
previously-known 8-nucleotide sequence motif in 19 differ-
ent sequence and (ii) in an entirely independent analysis,
identified 2 sequence motifs, the K-box and GY-box, within
the BobA gene transcript. We now describe innovative re-
finements to our MDL-based DNA compression algorithm
with the goal of improved identification and analysis of bio-
logically meaningful sequence—particularly miRNA targets
related to breast cancer.

5. MDLcompress

The new MDLcompress algorithmic tool retains the fun-
damental element of OSCR—deeply—recursive heuristic-
based grammar inference, while trading computational com-
plexity for space complexity to decrease execution time. The
compression and hence the ability of the algorithm to iden-
tify specific motifs (which we hypothesize to be of potential
biological significance) have been enhanced by new heuris-
tics and an architecture that searches not only the sequence
but also the model for candidate phrases. The performance
has been improved by gathering statistics about potential
code words in a single pass and forming and maintaining
simple matrix structures to simplify heuristic calculations.
Additional gains in compression are achieved by tuning the
algorithm to take advantage of sequence-specific features
such as palindromes, regions of local similarity, and SNPs.

5.1. Improved SCR heuristic

MDLcompress uses steepest-descent stochastic-gradient
methods to infer grammar-based models based upon phrases
that maximize compression. It estimates an algorithmic min-
imum sufficient statistic via a highly recursive algorithm
that identifies those motifs enabling maximal compression.
A critical innovation in the OSCR algorithm was the use of
a heuristic, the symbol compression ratio (SCR), to select
phrases. A measure of the compression ratio for a particular
symbol is simply the descriptive length of the string divided
by number of symbols—grammar variables and terminals
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encoded by this symbol in the phrasebook. We previously de-
fined the SCR for a candidate phrase i as

di _ rillog,(R) — log, (ri)] +1;

A=
L lir;

(10)

for a phrase of length [;, repeated r; times in a string of total
length L, with R denoting the total number of symbols in the
candidate partition. The numerator in the equation above
consists of the MDL descriptive cost of the phrase if added to
the model and encoded, while the denominator consists of an
estimate of the unencoded descriptive cost of the candidate
phrase. This heuristic encapsulates the net gain in compres-
sion per symbol that a candidate phrase would contribute if
it were to be added to the model.

While (10) represents a general heuristic for determin-
ing the partition of a sequence that provides the best com-
pression, important effects are not taken into account by
this measure. For example, adding new symbols to a parti-
tion increases the coding costs of other symbols by a small
amount. Furthermore, for any given length and frequency,
certain symbols ought to be preferred over others, because
of probability distribution effects. Thus, we desire an SCR
heuristic that more accurately estimates the potential symbol
compression of any candidate phrases.

To this end, we can separate the costs accounted for in
(10) into three parameters: (i) entropy costs (costs to repre-
sent the new phrase in the encoded string); (ii) model costs
(costs to add the new phrase to the model); and (iii) previ-
ous costs (costs to represent the substring in the string pre-
viously). The SCR of [10, 11, 28] breaks these costs down as
follows:

~

R
Ch:Ri-log(Ej), (11)
Cm = li) (12)
C, = IR,

where R is the length of the string after substitution, J; is the
length of the code phrase, L is the length of the model, and
R; is the frequency of the code phrase in the string. An im-
proved version of this heuristic, SCR_2006, provides a more
accurate description of the compression work by eliminating
some of the simplifying assumptions made earlier. Entropy
costs (11) remain unchanged. However, increased accuracy
can be achieved by more specific costs for the model and pre-
vious costs. For previous costs we consider the sum of the
costs of the substrings that comprise the candidate phrase

li ﬁ/
Cp=Ri- > log (*), (13)
=t N

where R’ is the total number of symbols without the forma-
tion of the candidate phrase and r; is the frequency of the
jth symbol in the candidate phrase. Model costs require a
method for not only spelling out the candidate phrase but
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FiGURE 8: Symbol compression ratio (vertical axis) as a function of
phrase length and number of occurrences (horizontal axes) for the
first phrase encountered of a given length and frequency. The vari-
ation indicates our improved heuristic is providing benefit by con-
sidering descriptive cost of specific phrases based on the grammars
and terminals contained in the phrase, not just length and number
of occurrences.

also the cost of encoding the length of the phrase to be de-
scribed. We estimate this cost as

li D
Cw=M(;) + > log (f—) (14)
j=1 J

where M(L) is the shortest prefix encoding for the length
phrase. In this way we achieve both a practical method for
spelling out the model for implementation and an online
method for determining model costs that relies only on
known information. Since new symbols will add to the cost
of other symbols simply by increasing the number of symbols
in the alphabet, we specify an additional cost that reflects the
change in costs of substrings that are not covered by candi-
date phrase. The effect is estimated by

A L+2
Coz (R—R,) 10g<m) (15)
This provides a new, more accurate heuristic as follows:
SCR_2006 = SmtCht Co, (16)
CP

Figure 8 shows a plot of SCR_2006 versus length and number
of repeats for a specific sequence, where the first phrase of a
given length and number of repeats is selected. Notice that
the lowest SCR phrase is primarily a function of number of
repeats and length, but also includes some variation due to
other effects. Thus, we have improved the SCR heuristic to
yield a better choice of phrase to add at each iteration.

5.2. Additional heuristics

In addition to SCR, two alternative heuristics are evaluated to
determine the best phrase for MDL learning: longest match
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Input sequence

Pease porridge hot,

pease porridge cold,
pease porridge in the pot,
nine days old.

Some like it hot,

some like it cold,
some like it in the pot,
nine days old.

9
120
- TC
110
100
90
80
70
1 2 3 4 5 6 7

Total compression model inference

Sy — pease porridge s peasSsporridgSs
S$2 = <CR>some like it = SgsomSslikSsit
S3 = in the pot, <CR>nine days old.
S4 = cold,

S5 > e_

S¢ > <CR>

S7 = ot,

S — 81hS7865154865153565:h875,545,S3

— in thS5pS;SeninSsdays old.

Longest match model inference

S1 — in the pot, <CR>nine days old.
S» = , <CR>pease porridge

S3 > <CR>some like it

S — pease porridge hot, Sycold, $,8;S3hot, S3cold, S, S;

FIGURE 9: MDLcompress model-inferred grammar for the input sequence “pease porridge” using total compression (TC) and the longest
match (LM) heuristics. Both the SCR and TC heuristics achieve the same total compression and both exceed the performance of LM.
Subsequent iterations enable MDLcompress to identify phrases, yielding further compression of the TC grammar model.

(LM) and total compression (TC). Both of these heuristics
leverage the gains described above by considering the entropy
of specific variables and terminals when selecting candidate
phrases. In LM, the longest phrase is selected for substitution,
even if only repeated once. This heuristic can be useful when
it is anticipated that the importance of a codeword is propor-
tional to its length. MDLcompress can apply LM to greater
advantage than other compression techniques because of its
deep recursion—when a long phrase is added to codebook,
its subphrases, rather than being disqualified, remain poten-
tial candidates for subsequent phrases. For example, if the
longest phrase merely repeats the second longest phrase three
times, MDLcompress will nevertheless identify both phrases.

In TC, the phrase that leads to maximum compression
at the current iteration is chosen. This “greedy” process does
not necessarily increase the SCR, and may lead to the elim-
ination of smaller phrases from the codebook. MDLcom-
press, as explained above, helps temper this misbehavior by
including the model in the search space of future iterations.
Because of this “deep recursion” phrases in both the model
and data portions of the sequence are considered as candi-
date codewords at each iteration-MDLcompress yields im-
proved performance over the GREEDY algorithm [16]. As
with all MDL criteria, the best heuristics for a given sequence
is the approach that best compresses the data. The TC gain
is the improvement in compression achieved by selecting a
candidate phrase and can be derived from the SCR heuris-
tic by removing the normalization factor. Examples of MDL-
compress operating under different heuristics or combina-
tions of heuristics are shown in Figures 9 and 10. Under our
improved architecture, the best compression seems to usu-
ally be achieved in TC mode, which we attribute to the fact

—— Model cost

— Description cost
— Total cost

FiGURrE 10: The compression characteristic of MDLcompress using
the hybrid heuristics longest match, followed by total compress after
the longest match heuristic ceases to provide compression.

that we search the model as well as remaining sequence for
candidate phrases, reducing the need for and benefit from
the SCR heuristic. By comparison, SEQUITUR [17] forms
a grammar of 13 rules consisting of 74 symbols. Thus, us-
ing MDLcompress TC we achieve better compression with a
grammar model of approximately half the size.
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Phrase starting index

a rose is a rose i
=
=
o0
=)
<
211 1
-
=
~
2 2
Index box
Box update

Phrase array has all information necessary to update
other candidates after each phrase is added to the model.

S1 i @s N

>>>phrase Array(1)

a rose. .-

index: 1
length: 6
verboselength: 6

chararray: "a rose’

startindices: [1 11 21]

frequency: 3
1 >>>phrase Array(2)

ans =
index: 1
length: 10
verboselength: 10
chararray: *a rose is’
startindices: [1 11]
frequency: 2

Phrase array

>>>phrase Array(1)

ans =
index: 1
length: 1
verboselength: 6
chararray: "a rose’
startindices: [16 11]
frequency: 3

il@s S1
>>>phrase Array(2)

ans =

index: 1
length: 5
verboselength: 10
chararray: ’a rose is’
startindices: [1 6]
frequency: 2

FiGure 11: The data structures used in MDLcompress allow constant time selection and replacement of candidate phrases. In the top of the
figure is the initial index matrix and phrase array. After adding “a rose” for the model, MDLcompress can generate the new index box and

phrase array, shown in the bottom half, in constant time.

5.3. Data structures

A second improvement of MDLcompress over OSCR is the
improvement to execution time to allow analysis of much
longer input strings, such as DNA sequences. This is achieved
through trading off memory usage and runtime by using ma-
trix data structures to store enough information about each
candidate phrase to calculate the heuristic and update the
data structures of all remaining candidate phrases. This al-
lows us to maintain the fundamental advantage of OSCR
and algorithms such as GREEDY [16] that compression is
performed based upon the global structure of the sequence,
rather than by the phrases that happen to be processed first,
as in schemes such as Sequitur, DNA Sequitur, and Lempel-
Ziv. We also maintain an advantage over the GREEDY algo-
rithm by including phrases added to our MDL model and the
model space itself in our recursive search space.

During the initial pass of the input, MDLcompress gener-
ates an Imax by L matrix, where entry M; ; represents the sub-
string of length i beginning at index j. This is a sparse matrix
with entries only at locations that represent candidates for
the model. Thus, substrings with no repeats and substrings
that only ever appear as part of a longer substring are repre-
sented with a 0. Matrix locations with positive entries repre-
sent the index into an array with many more details for that
specific substring. In the example in Figure 11, “a rose” ap-
pears three times in the input. In each location of the matrix
corresponding to this substring is a 1, and the first element in
the phrase array has the length, frequency, and starting index
for all occurrences of the substring. A similar element exists
for “arose is” but not exist for “a rose” since that only appears
as a substring of the first candidate.

During the phrase selection part of each iteration, MDL-
compress only has to search through phrase array, calculat-
ing the heuristic for each entry. Once a phrase is selected,
the matrix is used to identify overlapping phrases, which will
have their frequency reduced by the substitution of a new
symbol for the selected substring. While there may be many
phrases in the array that are updated, only local sections of
the matrix are altered, so overall only a small percentage of
the data structure is updated. This technique is what allows
MDLcompress to execute efficiently even with long input se-
quences, such as DNA.

5.4. Performance bounds

The execution of MDLcompress is divided into two parts: the
single pass to gather statistics about each phrase and the sub-
sequent iterations of phrase selection and replacement. Since
simple matrix operations are used to perform phrase selec-
tion and replacement, the first pass of statistics gathering al-
most entirely dominates both the memory requirements and
runtime.

For strings with input length, L, and maximum phrase
length, Iy, the memory requirements of the first pass are
bounded by the product L * I,y and subsequent passes re-
quire less memory as phrases are replaced by (new) indi-
vidual symbols. Since the user can define a constraint on
Imax, memory use can be restricted to as little as O(L), and
will never exceed O(L?). On platforms with limited memory
where long phrases are expected to exist, the LM heuristic
can be used in a simple preprocessing pass to identify and
replace any phrases longer than the system can handle in
the standard matrix described above. Because MDLcompress
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TaBLE 1
Genes D.NACOmpr.ess Sequitur DNASequitur MDLcompresss
(bits/nucleotide)
HUMDYSTROP 1.91 2.34 2.2 1.95
HUMGHCSA 1.03 1.86 1.74 1.49
HUMHBB 1.79 2.20 2.05 1.92
HUMHDABCD 1.80 2.26 2.12 1.92
HUMPRTB 1.82 2.22 2.14 1.92
CHNTXX 1.61 2.24 2.12 1.95

inspects the model when searching for subsequent phrases,
this technique has minimal negative effect on overall com-
pression.

The runtime of the first pass depends directly on L, Iax,
average phrase length l,5, and average number of repeats
of selected phrases, rays. The unclear relationship between
Inax> lavg> Tavg, and L makes deriving guaranteed performance
bounds difficult. As a simple upper bound, we can note that
the product lyg * rayg must be less than L, and the maximum
phrase length must be less than L/2, yielding a performance
bound of O(L?). In practice, a memory constraint limits [y
to a constant independent of L, and L,y * 44 Was approxi-
mately constant and much smaller than L. Thus, the practical
performance bound was O(L).

The runtime of the second part of the algorithm, selec-
tion and replacement of compressible phrases, is simply the
sum of the time to identify the best phrase and to update
the matrices for the next iteration, multiplied by the number
of iterations. An upper bound on these is O(L?), but again
practical performance is much better. In this DNA applica-
tion where 144 genes were analyzed, the number of candi-
date phrases, the average number of affected phrases, and the
number of iterations all were independent of input length,
and the selection and replacement phase ran in constant
time.

5.5. Enhancements for DNA compression

When a symbol sequence is already known to be DNA, sev-
eral “priors” can be incorporated into the model inference
algorithm that may lead to improved compression perfor-
mance. These assumptions relate to types of structure that
are typical of naturally occurring DNA sequence. By tuning
our algorithm to efficiently code for these mechanisms, we
are essentially incorporating these priors into our model in-
ference algorithm “by hand.” We consider these assumptions
to be small and within the “big O” constant inherent in trans-
lating between universal computers.

6. REVERSE-COMPLEMENT MATCHES

As in DNA Sequitur, the search for and grammar encod-
ing of reverse-complement matches is readily implemented
by adding the reverse-complement of a phrase to the MDL-

compress model and taking account of the frequency of the
phrase and its reverse-complement in motif selection.

7. POST PROCESSING

After the MDLcompress model has been created, two meth-
ods possibilities for further compression are the following.

(1) Regions of Local similarity: it is sometimes most effi-
cient to define a phrase as a concatenation of multiple
shorter and adjacent phrases already in the codebook.

(2) Single nucleotide polymorphisms (SNPs): it is some-
time most efficient to define a phrase as a single nu-
cleotide alteration to another phrase already in the
codebook.

8. COMPARISON TO OTHER GRAMMAR-BASED
CODES

We compare MDLcompress with the state of the art in
grammar-based compression: DNA Sequitur [18]. DNA Se-
quitur improves the Sequitur algorithm by enabling it to har-
ness advantages of palindromes and by considering other
grammar-based encoding techniques as discussed in [20].
Results are summarized in Table 1.

While compression is ultimately the best measure of al-
gorithm’s capacity to approximate Kolmogorov complexity,
an additional feature of grammar-based codes is their two-
part encoding, which separates the meaningful model from
the data elements—an advantage we will discuss in more
detail later. The results above make use of the total com-
pression heuristic and harness the advantage of consider-
ing palindromes. Although we exceeded the compression of
DNA Sequitur, DNACompress still achieves better compres-
sion; however it does not yield the two-part grammar code
that identifies biologically significant phrases, which we will
discuss next in the context of breast-cancer-related genes.

9. IDENTIFICATION OF MIRNA TARGETS
USING MDLCOMPRESS

As shown in Figure 7, MDL algorithms can be used to
identify miRNA target sites. We have also tested MDL-
compress for the ability to identify miRNA target sites in
known disease-related genes. The general approach is to an-
alyze mRNA transcripts to identify short sequences that are
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MDLcompress & LATS2: sequence elements in long 3’UTR

LOCUS NM_014572

Definition homo sapiens LATS, large tumor suppressor, homolog 2 (Drosophila)

(LATS2), mRNA.

\_Y_J

T+

5UTR CDS

MDLcompress (of 3’UTR ) output sequences

Sequence Position in 3’UTR
1) aaaaaaaaaaaa 433,445
2) agcacttatt 262,362
3) aaacaggac 155,172

F1GURE 12: Validation of MDLcompress performance. MDL compress identifies miRNA-372 and 373 target motif (AGCACTTATT) in LATS2

tumor suppressor gene as second phrase.

repeated and localized to the 3'UTR. Comparative genomics
can be applied to increase our confidence that MDL phrases
in fact represent candidate miRNA target sites, even if there
are no known cognate miRNAs that will bind to that site.

As a test, we sought to determine if MDLcompress would
have identified the miRNA binding site in the 3’ UTR of the
tumor suppressor gene, LATS2. A recent study, which used a
function-based approach to miRNA target site identification,
determined that LATS2 is regulated by miRNAs 372 and 373
[29]. Increased expression of these miRNAs led to down reg-
ulation of LATS2 and to tumorigenesis. The miRNA 372 and
373 target sequence (AGCACTTATT) is located in the 3’UTR
of LATS2 mRNA and is repeated twice but was not identified
with computation-based miRNA target identification tech-
niques. Using the 3’UTR of LATS2 mRNA as an input, three
code words were added to the MDLcompress model, using
longest match mode as shown in Figure 12, the polyA tail,
the miRNA 372 and 373 target sequence (AGCACTTATT),
and a third phrase (AAACAGGAC) which we do not iden-
tify with any particular biological function at this time. This
shows that analyzing genes of interest a priori with MDL-
compress can produce highly relevant sequence motifs.

Since miRNAs regulate genes important for tumorigene-
sis and MDLcompress is able to identify these targets, it fol-
lows that MDLcompress could be used to directly identify
genes that are important for tumorigenesis. To test this, we
used a target rich set of 144 genes known to have increased
expression patterns in ErbB2-positive breast cancer [30, 31]
and compressed each gene mRNA sequence with MDLcom-
press running in longest match mode. A total of 93 phrases
were added to MDLcompress codebooks resulting in com-
pression of these genes. Of these phrases, 25 were found ex-
clusively in the 3" UTRs of these genes. Since miRNAs interact
more frequently with the 3'UTRs of mRNAs [32], we focused
our analysis on these phrases, shown in Table 2.

The 25 3’UTR phrases were run through BLAST [33]
searches of a database of 3'UTRs [34, 35] to determine
level of conservation in human and other genomes. The
phrases were also run against the miRBase database [36] us-

ing SSEARCH [37] to detect possible sequence similarities to
known miRNAs. Finally, genes containing these phrases were
targeted with shRNA constructs in an ErbB2-positive breast
cancer cell line (BT474), as well as in normal mammary
epithelial cells (HMEC), in order to identify their poten-
tial role in breast tumorigenicity. One MDLcompress phrase,
AGAUCAAGAUC, found in the 3'UTR of the splicing fac-
tor arginine/serine-rich 7 (SFRS7) gene (a) was highly con-
served, (b) resulted in miRBase matches to a small number of
miRNAs that fulfill the minimum requirements of putative
miRNA targets [32] (Figures 13(a) and 13(b)) in vitro data
implicate this gene in breast cancer progression. More specif-
ically, down regulation of SFRS7 by shRNAs in BT474 cells
yielded a significant decrease in the proliferation marker ala-
marBlue (Biosource), but not in normal mammary epithelial
cells (HMEC) (Figure 13(b)). In this experiment, cells were
transiently transfected with miRNA-based-structure shRNA
constructs [38] targeting the coding sequence of SFRS7, by
using a lipid-based reagent (FuGENE 6, Roche). A plasmid
construct expressing green fluorescent protein (MSCV-GFP)
was cotransfected to the cells to normalize transfection effi-
ciency [3]. shRNAs against the firefly luciferase gene was used
as negative control. Although regulation by the specific miR-
NAs identified in our bioinformatics analysis still requires
validation, these results suggest the possible differential regu-
lation of this gene in breast cancer by a miRNA and that this
gene is significant in cell proliferation, underscoring the po-
tential for OSCR to identify sequence of biological interest.

10. ANALYSIS OF SINGLE NUCLEOTIDE
POLYMORPHISMS

By definition, mutation of an essential nucleotide within a
given miRNA’s target sequence within an mRNA is expected
to have a strong effect on the activity of the given miRNA
on the target. If a nucleotide that is required for interac-
tion of a miRNA with the mRNA is altered, the miRNA may
cease to regulate that target, thereby enhancing expression
of the mRNA and the protein it encodes. Alternatively, a
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TaBLE 2: 3"UTR MDLcompress phrases from 144 ErbB2-positive-related gene mRNA sequence.

Accession number Number of repeats Length Phrase Locations
NM_000442 2 13 tttetettttect 2835,3091
NM_004265 2 10 tcagggaggg 2274,2667
NM_004265 2 10 ccccccagcet 2954,3021
NM_004265 2 10 gcagaggcag 2255,3051
NM_005324 2 12 ttttatttataa 1292, 1802
NM_005324 2 10 cagtttectt 997,1991
NM_005324 2 9 tttataata 627,1055
NM_005930 2 11 tatttcaattt 2903,2932
NM_005930 2 11 tatttttgcte 2733,3809
NM_005930 2 10 gacaaatgtg 3064, 3250
NM_005930 2 10 cttttttttc 3425,3689
NM_005930 2 10 ttggaacact 3750,3787
NM_006148 2 13 gtgtgtgagtgtg 1951,3654
NM_006148 2 12 ccccagtcteca 647,1651
NM_006148 2 11 acttcttggtt 1067, 1290
NM_006148 2 11 cctectgeeca 1186, 1503
NM_006148 2 11 ccccatctctg 2147,2302
NM_006148 2 11 ggaagcacagc 1545, 2447
NM_006148 2 11 tgtgggtgggg 2014,2776
NM_006148 2 11 cctttctggec 2812,3759
NM_006148 2 10 ctcectecte 1035, 1408
NM_006148 2 10 cagctaccgg 525,1591
NM_006148 2 10 tccecteece 1464,1828
NM_006148 2 10 gtggaggaag 2159,2267
NM_006276 2 11 agatcaagatc 1010, 1091
160
140 _|_
3’UTR 120
| | 100
80
60 5
40
\ ) 20
OSCR sequence IA(I}II\IIJ??J?CIQALIICIZ 0 BT474 HMEC
hsa-miR-218 UGUACCAAUCUAGUUCGUGUU
rno-miR-218 UGUACCAAUCUAGUUCGUGUU [ Luciferase shRNA control
xtr-miR-218 UGUACCAAUCUAGUUCGUGUU

()

B SsERS7 shRNA
(b)

FIGURE 13: A miRNA target site relevant to breast cancer is identified by OSCR. (a) Proposed interaction between miRNAs (human, rat,
frog) and OSCR phrase. (b) Down regulation of the SFRS7 by RNAi specifically inhibits the proliferation of breast cancer cell line BT474
and not normal cells. These miRNAs may be implicated in breast cancer.

single-nucleotide change to a target of one miRNA may yield
a target sequence for a distinct miRNA. A report published in
2006 demonstrated this SNP effect in a mammal. The study
found that Texel sheep, which are known for their meatiness,
possess a mutation in the 3'UTR of the myostatin gene that

results in an “illegitimate” interaction of miRNA 1 and 206
with the myostatin mRNA [39]. Mutations that yield such
interactions between mutant mRNA and miRNAs are called
“Texel-like.” The authors performed a preliminary analysis
of known human SNPs and their potential for perturbing
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SNP500

(500 genes)

(a)

Name Accession MDL sequence Position SNP

ESR1 NM_000125 GATATGTTTA 4023.5325 4029 T— C
PTGS2 NM_000963 CAAAATGC 2179,2717.3097 3103 G— A
EGFR NM_005228 TTTTACTTC 4233.4967 4975C—-T

(b)

Ficure 14: MDLcompress directly identifies putative miRNA target sequences that may be implicated in breast cancer. (a) Schematic of
overlap between SNP500 database and potential miRNA sequences identified by MDLcompress in the test set. (b) Potential miRNA sites
identified by MDLcompress with disease-related polymorphisms identified by SNP analysis. These miRNA targets may be implicated in

breast cancer.

binding sites of predicted miRNAs and identified 2490 Texel-
like mutations and 483 mutations that potentially result in
loss of miRNA binding.

We performed a similar analysis on the 144 overexpressed
gene mRNA sequences from the BT474 breast cancer cell
line [30, 31] to identify which of these genes possess disease-
related Texel-like mutations. By cross-referencing with the
SNP500 database [40], SNPs were found in 13 of the 144
overexpressed gene mRNA sequences from the BT474 breast
cancer cell line, all in the 3"UTR region. The initial compari-
son of the 93 MDLcompress code words from the 144 genes
discussed previously did not match with any SNP phrases.

We then relaxed the strict constraint that a phrase must lead 0.5 1 1
to compression at every step and asked MDLcompress in
longest match to identify the top 10 candidates in each gene 0 - - - -

2700 2710 2720 2730 2740 2750

mRNA sequence that would most likely lead to compression.
Strikingly, 3 of these genes-ESR-1, PGTS2, and EGFR-have
SNPs in the set of the first 10 code word candidates identified
by MDLcompress when run on each these genes respective
mRNA sequence (Figure 14). These three sequences were se-
lected out of the 13 because they fulfill the criteria we used
for Figure 13(a), that based on sequence analysis (similarity
to miRNA sequences and intra- and inter- species sequence
conservation); they are putative miRNA targets.

These motifs are localized to the 3’UTR and have not
been predicted to interact with any known miRNAs in the
literature. Although further validation studies are required,
these observations suggest that MDLcompress may be capa-
ble of directly identifying potential miRNA target sequences
with roles in breast cancer.

Our hypothesis regarding the significance of MDL
phrases that are added to the MDLcompress model motivates
search of these phrases for SNPs related to cancer. As shown
in Figure 10, an SNP identified in PTGS2 gene [40] colo-
calizes with the MDLcompress-identified phrase caaaatgc in
the 3’UTR of PTGS2 and yields a disproportionate change
in the descriptive cost of the sequence under the MDLcom-
press model generated for the original sequence. Altering a

MDLcompress cost per nucleotide-based of PGTS2 with SNP

taaaacttcctittaaatcaaaatgccaaatttattaaggtggtggagee

FiGure 15: Cost per nucleotide for PTGS2. The blue curve identifies
cost per nucleotide of the original sequence based upon an MDL-
compress model developed using the total compression heuristic
and the first 15 phrases to be selected. The cost per nucleotide under
the SNP ¢ — a is shown in red.

single nucleotide typically yields a very small change in de-
scriptive cost, in most cases less than a bit; however, the SNP
in the phrase shown in Figure 15 yields a change in descrip-
tive cost on the order of 4 bits, suggesting that this phrase
is in fact meaningful. Future work will elaborate on this po-
tential relationship between meaningful phrases identified by
MDLcompress and disease, and explore the capability of us-
ing MDLcompress models to predict sites where SNPs are es-
pecially likely to cause pathology.

11. CONCLUSIONS

MDLcompress yields compression of DNA sequences that is
superior to any other existing grammar-based coding algo-
rithm. It enables automatic detection of model granularity,
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leading to identification of interesting variable-length motifs.
These motifs include miRNA target sequences that may play
arole in the development of disease, including breast cancer,
introducing a novel method of identifying microRNA targets
without specifying the sequence (or, in particular, seed) of
the microRNA that is supposed to bind them. Additionally,
we have used our algorithm here to study SNPs found in
overexpressed genes in the breast cancer cell line BT474, and
we identified 3 SNPs that may alter the ability of microRNAs
to target their sequence neighborhood.

In future work, MDL specificity will be improved
through windowing and segmentation, concepts described
in Figure 4. Running MDLcompress on consecutive windows
of sequence will enable the detection of change points, such
as the transition from noncoding to coding sequence, and
permit the use of multiple codebooks, enhancing specificity
for each region of a gene. For example, the optimal MDL
codebook for a coding region is unlikely to be the same as
that for a 3’UTR. Applying the same model over an entire
gene reduces the effectiveness of the MDL compression algo-
rithm in identifying biologically significant motifs. This im-
provement of MDLcompress to detect and take advantage of
change points will enable the detection of nonadjacent re-
gions of the genome that are similar. The execution time of
MDLcompress will be further reduced by means of a novel
data structure that augments a suffix tree with counts and
pointers, enabling deep recursion of model inference without
intractable computation. With this structure, when a phrase
is selected for the MDLcompress codebook, simple opera-
tions can update the structure to facilitate selection of the
next phrase by leveraging known information. The suffix-
tree with counts and pointers architecture will enable near-
linear time processing of the windowed segments.
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