From: Learning directed acyclic graphs from large-scale genomics data

Initialization:
M^{(0)}=0_{
N×N
}; \(\phantom {\dot {i}\!}\boldsymbol {M}_{s=0} = \boldsymbol {0}_{N_{S} \times N_{S}}\); frequency counter \(n^{(0)}_{i,j} = 0\)
| |

Repeat:
| |

1: Select subset \(\mathcal {G}_{s}\) of size N
_{
S
} from \(\mathcal {G}\); draw each gene from \(\mathcal {G}\) with equal probability without replacement
| |

2: Update: \(n^{(s+1)}_{i,j} = n^{(s)}_{i,j} + 1\) for all \(i,j \in \mathcal {G}_{s}\) | |

3: Estimate the DAG topology \(\mathcal {E}_{s}\) of set \(\mathcal {G}_{s}\) using GENIE, GI-GENIE, respectively; ⇒M_{
s
}
| |

4: Update reliability matrix M^{(s)} according to Eq. (16)
| |

7: Update iteration number: s←s+1
| |

Until:
s=S;
| |

Set \( \left [ \boldsymbol {M} \right ]_{i,j} = \left [ \boldsymbol {M}^{(S)} \right ]_{i,j} / n^{(S)}_{i,j} \, \forall i,j \in \mathcal {G}\) |