Skip to main content

Advertisement

Table 1 Univariate case: required weight w for unbiased convex bootstrap estimation

From: Unbiased bootstrap error estimation for linear discriminant analysis

  n=10 n=20 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100
ε=0.025 0.724 0.687 0.679 0.675 0.674 0.672 0.671 0.671 0.670 0.670
ε=0.050 0.736 0.696 0.685 0.680 0.678 0.676 0.674 0.673 0.672 0.672
ε=0.075 0.738 0.701 0.689 0.683 0.679 0.677 0.676 0.674 0.674 0.673
ε=0.100 0.729 0.704 0.691 0.684 0.681 0.678 0.677 0.675 0.674 0.673
ε=0.125 0.708 0.701 0.692 0.686 0.682 0.679 0.677 0.676 0.675 0.674
ε=0.150 0.681 0.692 0.693 0.687 0.683 0.680 0.678 0.677 0.676 0.675
ε=0.175 0.646 0.670 0.688 0.687 0.683 0.680 0.678 0.677 0.676 0.675
ε=0.200 0.625 0.631 0.673 0.683 0.683 0.681 0.679 0.677 0.676 0.675
ε=0.225 0.614 0.574 0.639 0.671 0.679 0.680 0.679 0.677 0.676 0.675
ε=0.250 0.617 0.516 0.579 0.635 0.663 0.673 0.676 0.677 0.676 0.675
ε=0.275 0.641 0.470 0.498 0.563 0.617 0.648 0.664 0.671 0.673 0.674
ε=0.300 0.676 0.459 0.425 0.464 0.523 0.577 0.616 0.641 0.656 0.665
ε=0.325 0.724 0.487 0.393 0.379 0.405 0.451 0.502 0.548 0.587 0.614
ε=0.350 0.780 0.549 0.422 0.356 0.331 0.334 0.356 0.389 0.428 0.469
ε=0.375 0.837 0.639 0.505 0.412 0.350 0.310 0.288 0.280 0.282 0.295
ε=0.400 0.890 0.741 0.626 0.533 0.458 0.398 0.350 0.312 0.283 0.261
ε=0.425 0.935 0.842 0.761 0.690 0.627 0.570 0.519 0.474 0.434 0.399
ε=0.450 0.971 0.925 0.884 0.845 0.808 0.772 0.739 0.707 0.676 0.647
  n =110 n =120 n =130 n =140 n =150 n =160 n =170 n =180 n =190 n =200
ε=0.025 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.668 0.668 0.668
ε=0.050 0.671 0.671 0.671 0.671 0.670 0.670 0.670 0.669 0.670 0.669
ε=0.075 0.672 0.672 0.671 0.671 0.671 0.671 0.670 0.670 0.670 0.670
ε=0.100 0.673 0.672 0.672 0.671 0.671 0.671 0.671 0.670 0.670 0.670
ε=0.125 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671 0.670 0.670
ε=0.150 0.674 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671 0.671
ε=0.175 0.674 0.673 0.673 0.672 0.672 0.672 0.672 0.671 0.671 0.671
ε=0.200 0.674 0.673 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671
ε=0.225 0.675 0.674 0.673 0.672 0.672 0.672 0.672 0.672 0.671 0.671
ε=0.250 0.675 0.674 0.673 0.673 0.672 0.672 0.672 0.672 0.671 0.671
ε=0.275 0.674 0.674 0.673 0.673 0.673 0.673 0.672 0.671 0.671 0.671
ε=0.300 0.669 0.671 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672
ε=0.325 0.635 0.648 0.657 0.663 0.666 0.668 0.669 0.670 0.671 0.671
ε=0.350 0.508 0.543 0.572 0.597 0.615 0.630 0.642 0.649 0.655 0.660
ε=0.375 0.313 0.337 0.365 0.394 0.425 0.455 0.484 0.511 0.536 0.557
ε=0.400 0.245 0.234 0.229 0.228 0.229 0.235 0.243 0.254 0.268 0.283
ε=0.425 0.367 0.338 0.313 0.290 0.270 0.253 0.238 0.224 0.213 0.203
ε=0.450 0.620 0.594 0.569 0.545 0.522 0.501 0.480 0.461 0.442 0.424