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Abstract

Electrocardiogram is a slow signal to acquire, and it is prone to noise. It can be inconvenient to collect large number
of ECG heartbeats in order to train a reliable biometric system; hence, this issue might result in a small sample size
phenomenon which occurs when the number of samples is much smaller than the number of observations to model.
In this paper, we study ECG heartbeat Gaussianity and we generate synthesized data to increase the number of
observations. Data synthesis, in this paper, is based on our hypothesis, which we support, that ECG heartbeats exhibit
a multivariate normal distribution; therefore, one can generate ECG heartbeats from such distribution. This
distribution is deviated from Gaussianity due to internal and external factors that change ECG morphology such as
noise, diet, physical and psychological changes, and other factors, but we attempt to capture the underlying
Gaussianity of the heartbeats. When this method was implemented for a biometric system and was examined on the
University of Toronto database of 1012 subjects, an equal error rate (EER) of 6.71% was achieved in comparison to
9.35% to the same system but without data synthesis. Dimensionality reduction is widely examined in the problem of
small sample size; however, our results suggest that using the proposed data synthesis outperformed several
dimensionality reduction techniques by at least 3.21% in EER. With small sample size, classifier instability becomes a
bigger issue and we used a parallel classifier scheme to reduce it. Each classifier in the parallel classifier is trained with
the same genuine dataset but different imposter datasets. The parallel classifier has reduced predictors’ true
acceptance rate instability from 6.52% standard deviation to 1.94% standard deviation.
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1 Introduction

Electrocardiogram (ECG) signal is a quasi-periodic sig-
nal with a frequency of 1-1.5 heartbeats per second. It
is a recording of the electrical activity in the heart. An
ECG signal consists of ECG heartbeats, and each healthy
heartbeat has the fiducial points P, Q, R, S, T, and U as
illustrated in Fig. 1. Heartbeats have recently been used as
a biometric modality. Biometrics is the field of study that
models people’s identity using their physical or behavioral
traits [1]. After the millennium [2], research concentra-
tion on biometrics from signals that are available to all
human beings and from signals that are hard to spoof
has increased. Some of the biomedical signals that have
been used as biometrics are as follows: electromyogram
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(EMG) [3], muscle signal; phonocardiogram (PCG) [4],
heart sound; photoplethysmogram (PPG) [5], organ’s vol-
umetric measure; electroencephalogram (EEG) [6], brain
electrical signal; and ECG [7]. Among all these medi-
cal signals, the ECG signal is widely used and studied
worldwide to diagnose heart problems. Therefore, apart
from establishing extensive knowledge about ECG signal
by the scientific community, inexpensive sensing devices
to acquire the signal have been produced. For this rea-
son, ECG as biometrics can be an inexpensive system
to deploy.

Biometric systems require a training stage (interchange-
ably called enrollment stage) to verify/identify individuals.
During the training stage, subjects identities are mod-
eled and stored in a database. Intuitively, the bigger the
sample size (the number of observations) the better the
model. However, collecting large number of training data
can sometimes be troublesome. For example, in forensic
applications, one may have few fingerprints or mug shots
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Fig. 1 ECG heartbeat with fiducial points

of a subject to model. Collecting training data can also be
expensive and inconvenient. For instance, an ECG signal
would require minutes of clean data acquisition to con-
struct a distinctive dataset. Sparing such amount of time
might not be feasible. An airport is a fast-paced environ-
ment example where requiring minutes to collect data is
not preferred.

The most common configuration to set up ECG elec-
trodes is the 12-lead configuration which uses ten elec-
trodes. Six of the ten electrodes are connected to the
chest, and four electrodes are connected to the limbs.
Misplacing the electrodes affects the acquired ECG sig-
nal morphology [8]. Using the 12-lead configuration as
a wearable device may not be very attractive due to its
inconvenient electrode setup. Other configurations such
as a 1-lead configuration [9], which collects ECG signals
from fingertips using three electrodes, are more appeal-
ing. However, it is more prone to noise than the 12-lead
configuration.

In this paper, we tackle the problem of having a small
sample size. There are two issues that give rise to this
problem. First, the signal is noisy; thus, removing noisy
heartbeats reduces the number of observations in the
dataset. Also, the ECG heartbeat is a slow signal to acquire
especially if compared to other biometrics traits such
as video-based face recognition where it is possible to
stream 30 frames per second. For practical applications,
the extent of people’s patience to cooperate and pro-
vide their data for enrollment has been recently studied
[10-12].

For this paper, we simulate a small sample size environ-
ment by allocating a small number of observations to train
a model. We chose an arbitrary number of 20 observa-
tions as our baseline since we aimed to have 30-40 s of
an enrollment session which we decided on from reports
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on people’s patience in [10-12]. This enrollment session
length can provide a possible range of 20-30 heartbeats.
We arrived at this number based on observations from
the outlier removal experiment in a subsequent section
and our work in [13]. We propose two contributions in
this paper: the first is to synthesize ECG heartbeats to
increase the number of observations, and second, to study
the Gaussianity of ECG signals. Furthermore, due to the
small sample size, instability in subjects models occurs;
hence, we stabilize the model by fusing several classifiers
in a parallel scheme.

This paper is organized such that Section 2 reviews
the literature. Section 3 presents the examined database,
method of evaluation, and the preprocessing stage along
with heartbeat data synthesis and the parallel classi-
fier. Section 4 provides experiments and results. Lastly,
Section 5 concludes this paper.

2 Literature review

The problem of having a small sample size persists among
most biometric systems. Several approaches are available
to tackle this problem such as dimensionality reduction,
data synthesis, and cascade classifiers which deal with
data imbalance.

Most of the work in the literature apply dimension-
ality reduction techniques. In [14], the authors claimed
that when dimensionality reduction is used, the accuracy
increases when sample size increases; however, it starts
decreasing when a specific sample size is reached. Feature
selection and feature extraction are other approaches to
handle the small sample size issue, and they are similar
in concept to dimensionality reduction. The work in [15]
acknowledged the dimensionality reduction problem but
claimed that using support vector machine (SVM) can be
a viable approach since it generalizes with small sample
size and high dimensional space. On the other hand, the
work in [16] reported that SVM underperformed when
compared to bagging classification in ECG biometrics. In
[17], the authors examined several dimensionality reduc-
tion techniques with different feature selection methods
(Wrapper and ReliefF), feature extraction (principal com-
ponent analysis (PCA)), and classifiers (K-nearest neigh-
bor, linear discriminative analysis (LDA), Naive Bayes,
SVM, and others). It was demonstrated that the highest
accuracy was achieved using ReliefF and PCA since they
better generalize the data. In [18, 19], the authors pro-
posed quadratic-like discriminative analysis. In this paper,
we compare our proposed work to several dimensionality
reduction techniques.

Generating synthesized data is mostly examined in face
recognition due to symmetry of the face. In [20], the
authors generated mirror images of the original image
and generated extra left and right symmetrical images. In
[21], the authors proposed a cascade classifier where each
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classifier was trained with a fixed number of samples to
reduce data imbalance. Lastly, some techniques are ori-
ented towards synthesizing ECG heartbeats, but they are
not for biometrics applications as in [22]. The work in [22]
extracts all fiducial points in Fig. 1, and we argue that error
in extracting these fiducial points negatively affects the
performance of a biometric system.

3 Methodology

Verification biometric system is the focus of this paper.
A verification biometric system is a binary classification
problem to separate two classes: genuine and imposter.
The genuine class corresponds to data acquired from the
subject that needs to be modeled while the imposter class
corresponds to data collected from subjects other than
the genuine subject. The imposter class dataset is much
larger than the genuine class dataset since any subject
that is not genuine can be considered as an imposter. In
two-class classification problems, classifiers need to be
trained with both genuine and imposter datasets in order
to design a function that can separate them. If an imbal-
anced number of data is used, bias occurs and accuracy is
sacrificed. If the number of imposter data is reduced to be
in balance with the number of genuine data, the biomet-
ric system does not perform too well. Table 1 presents this
phenomena.

In this paper, we propose to study the Gaussianity of
ECG signal then synthesize it based on a parametric
model (Gaussian) to increase sample size. The main point
of increasing the sample size is to reduce the imbalance
in number between genuine and imposter data. We also
use a parallel classifier scheme to reduce instability in clas-
sifiers. Before delving into the proposed work, the used
database throughout this paper along with the method of
evaluation is presented.

3.1 University of Toronto database

Throughout the past century, clinics have collected sev-
eral ECG databases. However, most of these databases
are for medical purposes. In our work, we rely on the
University of Toronto database (UofTDB). This database
was collected at the University of Toronto [9]. This paper
examined 1012 subjects. UofTDB was recorded from fin-
gertips with single lead and with sampling rate of 200 Hz.
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Each subject has a data recoding of 3min on average.
We used the dataset of 1012 to achieve scalability in
low-performance variance.

3.2 Method of evaluation
Quantities and their calculations that are used throughout
this paper are explained in this section. False acceptance
rate (FAR), false rejection rate (FRR), true acceptance rate
(TAR), true rejection rate (TRR), receiver operating char-
acteristic (ROC) curve, and equal error rate (EER) were
the main measures used to assess the quality of the pro-
posed system. Each tested dataset has G + I samples, with
G being the number of genuine heartbeats and I being the
number of imposter ECG heartbeat samples. We define
the number of true positive, nTP, as the number of cor-
rectly classified genuine heartbeats. Similarly, the number
of true negative, nTN, is defined as the number of cor-
rectly classified imposter heartbeats. Moreover, the num-
ber of false positive, nFP, is the number of misclassified
imposter heartbeats as genuine heartbeats. Likewise, the
number of false negative, nFN, is the number of misclassi-
fied genuine heartbeats as imposter heartbeats. Following
these definitions:
nFP nTP
FAR= —— FRR=1- — (1)

Also TRR = 1 — FAR and TAR = 1 — FRR. ROC curves
measure the performance of a system in different operat-
ing points. An ROC curve plots FRR versus FAR. Closely
related is EER. EER is the error on the operating point for
which FAR is equal to FRR.

3.3 Preprocessing

ECG signal is one among other human body-generated
electrical signals. Other electrical and non-electrical sig-
nals may interfere with ECG signal acquisition (e.g., EMG
signal). Respiration also interferes with the acquisition
on the range of frequencies of 0.15-0.30 Hz [23]. Exter-
nal environment signals such as contact noise, power-
line interference (50 or 60 Hz), and electrode movements
(1-10Hz) are other sources of noise. A fourth-order
band-pass Butterworth filter with cutoff frequencies of
0.5—40 Hz was applied to the signal as a first stage of pre-
processing. Afterwards, ECG signals were isolated into

Table 1 Experiment illustrating data imbalance influence on accuracy

# of imp. obs. 20 40 60 80 100 150 200 250
EER (%) 1041 9.51 9.70 9.77 9.89 9.35 10.00 9.74
TRR (%) 89.59 95.38 97.50 98.21 98.80 99.32 99.56 99.70
TAR (%) 88.93 80.11 71.68 66.04 60.54 51.85 44.76 38.83

We used 20 observations for genuine data. Despite the fact that EER was not influenced greatly when number of imposter data increased, TAR has decreased significantly
and TRR has increased. This suggests that the classifier became biased towards imposter data. EER, TAR, and TRR quantities and their calculations are explained in Section 3.2.
TRR and TAR are calculated for the 50% decision threshold of selection between imposter and genuine classes

EER equal error rate, TAR true acceptance rate, TRR true rejection rate
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heartbeats and were centered at the R peaks with 500-ms
duration from each side of the peak [16]. R peaks were
detected using Pan-Tompkins [24].

After segmenting the signal, we removed outliers
using the Gaussian mixture model (GMM) online out-
lier removal in [13]. If we model normal heartbeats, then
any heartbeat with statistics significantly different from
the normal heartbeat model is classified as an abnor-
mal heartbeat. Hence, we constructed a normal heartbeat
model. For the task, normal heartbeat segments were
collected to train the GMM. We used the GMM as a one-
class classifier unlike the usual work in the literature which
uses it as an unsupervised clustering method. GMM is a
sum of M-weighted Gaussian densities [25] given by

M
P@) =Y Wiup(®, lms Con) (2)

where w,, are the weights of the Gaussian densities,
Zi\n/[ Wy, = 1. & is a k dimensional feature vector. There-
fore, the probability density function, p(x, tu, Cin), is
P s Con) = —————e 267 Culemn g
2m)2 (G2
where 1, and C,, are the mean vector and the covariance
matrix, respectively. Also, |Cy,| is the determinant of the
covariance matrix.

If we have a vector of 200 features (i.e., k = 200),
then each Gaussian distribution is of 200 dimensions. The
motivation behind using the GMM was the assumption
that normal ECG heartbeats could be modeled into M
Gaussian densities, each in k dimensions.

The expectation maximization (EM) [26] algorithm was
used to construct the GMM. EMconsiders all training
examples and attempts to fit a Gaussian distribution on it.
The training steps would be as the following:

1. Compute the probability that the training sample x
belongs to the Gaussian m using
@D (@) ) L
P(x|m) = %,where Px|p, CDy is
used to indicate that these values depend on the
previous iteration
2. Estimate the new weight wif,ﬂ) = % Zthl P(x¢|m)

. i I P(x¢|m)x
3. Estimate the new mean &0 = Zizi Pl
Hom S Plaelm)?

. T
4. Update the variance o201 = iz Pelmae 2
P " Sl Padmy

where T is the number of observations in the train-
ing dataset. There is no specific method for termination;
however, it is usually based on a heuristic approach.

3.3.1 Evaluation procedure
After obtaining the Gaussian models from the train-
ing data, the evaluation was based on the log-likelihood
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measurement. Log-likelihood measures quantitatively the
likelihood that the tested data belong to the mixture.
Choosing the minimum negative log-likelihood is equiva-
lent to choosing the maximum likelihood.

GMM with two components (GMM, M =2) was trained
on a dataset of normal heartbeats. GMM, M = 2 was used
in particular due to our previous work results in [13]. The
collection of normal heartbeats was conducted by remov-
ing abnormal ECG heartbeats from the examined pool
of heartbeats. A heartbeat that was significantly different
from healthy ECG morphology which contains P, Q, R,
S, T, and U fiducial points was considered as an abnor-
mal heartbeat. In other words, the R peak of the heart-
beats were first detected by Pan-Tompkins algorithm,
then these heartbeats were manually inspected to ensure
they follow the morphology in Fig. 1 to decide whether
they are normal or abnormal heartbeats. During biomet-
ric system experiments, every heartbeat in the examined
database was passed through this outlier removal to mea-
sure heartbeat quality and to decide whether to keep (i.e.,
classify as normal) or to eliminate (i.e., classify as abnor-
mal). Figure 2 demonstrates ECQG signal heartbeats before
and after outlier removal. Table 2 presents the EER for
the biometric system with and without outlier removal,
and it also reports the number of observations exam-
ined. It can be noticed that almost half the observations
were removed by applying this method of outlier removal.
Other outlier removal approaches might be used, but the
GMM-based outlier removal is an online outlier removal
that depends on current and previous observations only,
and it is subject invariant. Hence, it is more desirable in
practical applications. Therefore, it was used in the paper.
Despite the achieved high accuracy, around 50% of the
heartbeats were classified as abnormal heartbeats; conse-
quently, using such outlier removal may give rise to the
issue of small sample size. Also, for this reason, having
30-40 s of enrollment means we would collect an average
of 20 clean observations, which was used as a baseline in
this paper.

3.4 ECG heartbeats synthesis
We hypothesize that ECG heartbeats exhibit a multi-
variate Gaussian distribution. However, the influence of
internal and external factors deviate the model from
Gaussianity. We attempt to capture this underlying Gaus-
sianity. Each observation consisted of 200 time samples
(random variables) since the sampling rate is 200 Hz, and
we segmented the heartbeats to have a 1-s duration. As
mentioned earlier and as shown in Table 1, we desired to
generate data that can be appended to the genuine dataset
to reduce data imbalance and to reduce bias towards
imposter dataset.

We modeled the genuine data X € R"*% where # is
the number of observations and k = 200 is the number
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Fig. 2 GMM, M = 2 model outlier removal. a Before outlier removal;
b after applying GMM, M = 2 outlier removal

of dimensions. Therefore, an observation x with k dimen-
sions has probability density p(x) ~ N'(u, ) such that:

_ 1 o S E T (e pe) @
(2n)k/2|z |1/2

where u € RK is the mean of X, ¥ is the covariance matrix
of X, | X| is the determinant of the covariance matrix, and
¥ ! is the inverse of the covariance matrix. A synthesized
observation is generated by drawing a random vector from
this distribution.

A set of data synthesis is in Fig. 3. This result was not
surprising. Prior to making such multivariate hypothe-
sis, we analyzed the Gaussianity of the ECG heartbeat.

p(x)

Table 2 Biometric system performance with outlier removal
system without limiting training sample to 20 observations

Subject’s 20 real heartbeats

Amplitude

= I L L I I L L I I
0 20 40 60 80 100 120 140 160 180 200

Sample number

Subject’s 20 synthesized data

Amplitude

4 I L L I I L I I I
0 20 40 60 80 100 120 140 160 180 200

Sample number

Fig. 3 Synthesized data generation from multivariate Gaussian

Method EER (%) No. of observations
No outlier removal 9.44 158,984
GMM,M =2 5.94 78,655

distribution. a Real heartbeats; b synthesized heartbeats

We used Royston’s test [27, 28] for multivariate normal-
ity test. It is based on Shapiro-Wilk’s test [29], a univariate
normality test. Royston’s test checks normality of each
variable alone using Shapiro-Wilk’s test, then it combines
Shapiro-Wilk statistics into one statistics test for mul-
tivariate distribution. The combined multiple statistics
would approximate a x? random variable when the data
is a multivariate Gaussian distribution. If W is Shapiro-
Wilk’s test of the jth variable in the multivariate data, then
Royston’s test, R [30, 31]:

NG 2
ool e ()] e

Parameters g,m,ands are calculated from polynomial
approximation. ¢ (.), » 1 (.) are the CDF and its inverse for
the Gaussian distribution, respectively. If we have p vari-
ates, then the aggregation of R; in Eq. 6 would have a x>
distribution.
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(6)

e is the equivalent degree of freedom and is calculated
as:

p

= Trp-nC v

e
where C is calculated as the average of the correlations of
Rjs. Furthermore, we utilized Sequential Forward Selec-
tion (SFS) [32] algorithm with Royston’s test on the train-
ing dataset to investigate the number of variables that
constitutes a multivariate normal distribution. The algo-
rithm we implemented for multivariate Gaussian analysis
is in Algorithm 1. This algorithm incorporates SFS with
Shapiro-Wilk’s and Royston’s tests.

Algorithm 1: SES for multivariate normality selection
Data: X € Rk X = {x1,Xa, ..., Xk}
Result: {S :S C X, and is multivariate normal }
Initialization;
An empty set, S={};

while (1) do
while i<k do
if i=1 then
‘ Apply Shapiro_Wilk on S*, $*={S xi};
else
‘ Apply Royston’s test on §*, $*={S x;} ;
end
end
Find xp, such that $* has the highest normality;
Remove xp, from X S:{S* xp};
k:k-1;
end

After running Algorithm 1, ECG heartbeats could suc-
cessfully have multivariate normality with more than 20
variables out of the 200 variables. In other words, around
20 out of 200 dimensions could constitute a multivariate
normal distribution. This multivariate Gaussianity helps
us capture the underlying Gaussianity of the heartbeats
and supports our hypothesis that it is most likely that ECG
heartbeats exhibit a multivariate Gaussian distribution if
there are no changing factors that affect its morphology.
Also, experiments based on such assumption improved
biometric system performance.

In other words, we assume that ECG heartbeats for
each individual exhibit a multivariate Gaussian distribu-
tion; nevertheless, the changes in ECG heartbeat mor-
phology due to diet, physical and psychological changes,
and other factors deviate the signal from Gaussianity.

Page 6 of 10

From this Gaussian model, we create the synthesized ECG
heartbeats.

3.5 Parallel classifier to reduce instability

The main purpose of data generation is to increase bio-
metric system performance by making use of the abun-
dance of imposter dataset. The number of real genuine
observations is small; we restricted it to 20 observations.
On the other hand, we have thousands of imposter data.
Due to small number of real genuine observations, clas-
sifiers’ structures change significantly depending on the
imposter data that train the classifiers. We propose to
use a parallel classifier structure, and Fig. 4 presents the
scheme for it. All classifiers within the parallel classifier
were trained with same set of genuine training dataset, but
each classifier was trained with a different set of imposter
data. The mean value of confidences of the classifiers’
outputs was used to make a classification decision.

4 Experimentation

This section investigates three main experiments: first,
it presents biometric system improvement as a result of
data synthesis; second, the experiment compares biomet-
ric system accuracy with data synthesis versus systems
with different dimensionality reduction techniques from
the literature; and lastly, the third experiment demon-
strates the parallel classifier performance. Throughout all
experiments, the bagging classifier was used.

There are several classification methods in the liter-
ature, and bagging [33] is one of them. In a nutshell,
bagging is a machine learning technique that generates
predictors on merely re-sampled data. The aggregated
average of predictors makes a decision. Bagging was used
in particular because we observed an unstable classifier

Training Stage

o= eruns G () (& ()

different sets of

imposter data Classifier Classifier 0060 Classifier
1 2 n
Models M, M, M,
Testing Stage
Models ’l/h “fz |l/|n
Test Data O
Confidences
o ——
Decision

Fig. 4 Parallel classifier scheme
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prediction when we examined ECG heartbeat data. It was
unstable in a sense that a slight change in the training
data led to a significant change in the construction of the
classifier and a significant change in accuracy. Bagging
usually reduces this issue [33]. Work in [34] suggests the
superiority of bagging over other classifiers.

Suppose a training dataset, £, is populated with data
{yu>Xn,n = 1,...,N}, where y is the data class and x is the
input data. From these samples, bagging generates mul-
tiple bootstrap samples, £, from L. For each £®), it
finds a predictor that predicts the class, y. Bootstrapping
samples, L®, are constructed by drawing N samples with
replacement from L. The predictor used with bagging in
this paper is the simple decision tree. The final decision
on the class is made by voting.

4.1 Synthesized ECG heartbeat generation
This experiment reports the improvement achieved in a
biometric system’s EER, TAR, and TRR quantities. Syn-
thetic data were generated as explained in Section 3.4.
The generated data were added to the pool of real gen-
uine data, and they were used to train a bagging classifier.
Table 3 presents an experiment when the real genuine data
were restricted to 20 observations for every subject.
From Table 3, it can be noticed that the best EER
from the examined experiments was achieved when we

Table 3 Experiment for 20 real genuine data
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trained a classifier with 220 genuine observations (200
synthesized genuine data + 20 real genuine data) and 200
imposter data. Hence, this proves that adding data syn-
thesis improves results. One may inquire why do we not
consider the TAR of 400 synthesis data and 20 imposter
data as the best result? The reason is TAR, unlike EER
which considers both TAR and TRR, ignores TRR. TRR
for the same experiment (400 synthesized data and 20
imposter data) has a significant drop from the average
TRR of all experiments; it has a TRR 82.28%. The reason
behind that is that the classifier is biased towards the gen-
uine data. It is worth mentioning that the reported TAR
and TRR were calculated when the operating threshold
that splits genuine from imposter classes for the bagging
classifier was assigned to 50%.

From Table 3, a trend can be noticed that increasing the
number of synthesized samples does indeed improve the
result. However, it can improve the result to the extent
where real genuine data start to get concealed by the abun-
dance of the synthesized data. From this point onwards,
the model turns to be mostly a multivariate Gaussian
distribution only, i.e., it can be described by mean and
standard deviation parameters. This model by itself might
not be descriptive enough to classify a large number of
subjects adequately, e.g., the 1012-subject database in
UofTDB.

Number of synthesis

Number of imposter samples

20 40 60 80 100 150 200 250
EER (%)
0 1041 9.51 9.70 9.77 9.89 9.35 10.00 9.74
50 10.07 8.59 837 746 7.55 7.69 7.78 748
100 9.84 8.64 7.71 741 746 7.50 759 734
200 9.51 8.75 7.98 7.60 7.64 746 6.71 7.8
400 9.80 8.53 8.16 7.82 7.76 744 7.36 7.06
TAR (%)
0 88.93 80.11 71.68 66.04 60.54 51.85 44.76 38.83
50 93.99 89.51 85.36 82.90 80.43 7491 69.88 66.55
100 94.58 90.54 88.04 85.75 83.78 79.79 76.20 73.08
200 9537 91.54 89.06 87.02 85.48 82.22 7953 76.99
400 95.51 92.12 90.00 88.61 87.21 84.37 81.85 80.08
TRR (%)
0 89.59 9537 97.50 98.21 98.80 99.28 99.56 99.70
50 85.45 92.97 95.68 96.63 9743 98.40 98.89 99.15
100 84.82 92.11 94.83 96.00 96.82 97.95 98.51 98.83
200 83.24 91.25 93.90 95.19 96.09 97.36 98.02 9843
400 82.28 90.06 93.03 94.34 95.32 96.71 97.45 97.91

Synthetic genuine data are appended with real genuine data in training the bagging classifier
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Table 4 Experiment for 30 (top) and 60 (bottom) real genuine observations to: emphasize on performance improvement when we
have 30 and 60 genuine observations instead of 20 genuine observations (Table 3), show that data synthesis improves the results, and
lastly, to observe the upward improvement when training sample size was increased using data drawn from Gaussian distribution

Number of synthesis

Number of imposter samples

EER (%) 20 40 60 80 100 150 200 250
Training with 30 real genuine dataset
0 9.06 8.24 7.96 7.87 8.19 844 7.56 840
50 8.71 7.88 7.71 747 6.77 6.68 6.68 7.25
100 9.05 8.04 7.16 6.77 6.88 6.77 6.60 6.27
200 849 7.77 7.27 7.06 7.05 6.21 6.66 6.33
400 9.06 7.99 7.76 741 7.33 6.99 6.15 6.38
Training with 60 real genuine dataset
0 738 6.50 6.36 6.01 6.06 5.98 5.82 538
50 7.24 6.39 6.17 598 537 5.12 5.63 5.17
100 7.35 6.35 6.20 597 546 517 5.03 513
200 7.54 6.52 591 5.70 5.56 5.28 5.08 5.28
400 7.35 6.43 6.34 6.07 6.02 5.64 540 5.04

We considered a baseline of 20 real genuine observa-
tions, but we also conducted other experiments when
real genuine dataset has 30 and 60 observations. Table 4
tabulates the EER that was achieved along with its
corresponding number of synthesized data and number of
imposter data. This table further confirms our hypothesis
on the fact that adding the proposed generated synthe-
sized data reduces data imbalance and constructs a better
classifier.

4.2 Comparison to dimensionality reduction

Dimensionality reduction is one of the most used tech-
niques in the literature to deal with the small sample
size problem [14, 15]. In this experiment, we compared
the biometric system with data synthesis versus biomet-
ric systems with PCA, probabilistic PCA [35], Isomap
[36], Laplacian [37], and local linear embedding (LLE)
[38]. In all of these biometric systems, real genuine data
of 20 observations were used and a wide range of num-
bers of imposter data and numbers of reduced dimensions
were experimented. Table 5 tabulates the results with the

Table 5 Dimensionality reduction techniques with parameters
that achieved the lowest EER

Method EER (%) No. of impos. No. of dim.
PCA 9.92 20 40

Prob. PCA 13.47 120 20

Isomap 16.16 120 10

LLE 14.82 20 50
Laplacian 1343 250 20

Data synthesis 6.71 200 200

examined parameters that achieved the lowest EER while
Fig. 5 computes ROC curves for the biometric systems
with data synthesis and all dimensionality reduction tech-
niques with parameters that achieved the lowest EER. It
is pertinent to mention that all biometric systems were
implemented in an identical environment using same sets
of real genuine and imposter observations.

4.3 Parallel classifier

Bagging classifier has been investigated for ECG heart-
beats due to its capability to reduce instability in predic-
tors. Despite the reduction in instability, some instability
still exist. This instability can especially be noticed on
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Fig. 5 ROC curves for the biometric system with different dimensionality
reduction techniques
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performance of individual subjects rather than consid-
ering hundreds of subjects when calculating biometric
system performance using confusion matrix. Our pro-
posed parallel classifier further reduces such instability
by implementing bagging classifiers in a parallel scheme.
Table 6 reports the instability result and presents the influ-
ence of the parallel classifier in stabilizing it. It can be
observed from Table 6 that when there is no parallel clas-
sifier, TAR would have a standard deviation of 6.52% per
subject and TRR of 0.61% per subject while when parallel
classifier was used, TAR would have a standard deviation
of 1.94% per subject and TRR of 0.10% per subject. The
only difference among classifiers in the parallel classifier is
that the imposter datasets are different in each classifier.
Complexity can be an issue. If training a classifier takes
t seconds, then training # parallel classifiers needs n x ¢
seconds.

One might wonder that the parallel classifier might
make the bagging classifier a redundant stage since both
classifiers attempt to do the same task—the aggregate
decision of different classifiers trained with different data.
Nevertheless, the main difference is that in bagging, we re-
sample the data from the same pool while in the parallel
classifier, we change the imposter data completely in each
classifier. We have conducted an experiment to explain
that parallel classifier and bagging complement each other
rather than making one as redundant. The experiment
was conducted on the highest achieving results in Table 3
(i.e., 20 real genuine with 200 imposter samples and 200
synthesized data). We once created 50 parallel classi-
fiers while using just one decision tree (i.e., no bagging),
and once again, we experimented one parallel classifier
and bagging with 50 decision trees. Table 7 presents the
results.

From Table 7, we can conclude that parallel classi-
fier alone does not improve the results greatly or makes
bagging redundant but it increases robustness towards
changes in the imposter data as noted in Table 6.

5 Conclusions
Two contributions have been proposed in this paper:
analyzing the Gaussianity of ECG observations and a

Table 6 Standard deviation of TAR and TRR for biometric
systems with and without parallel classifier

No. of parallel TAR standard TRR standard
classifiers deviation (%) deviation (%)
0 +6.52 +0.61
5 +3.63 +0.24
10 +243 +0.17
20 +1.94 +0.10
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Table 7 Experiment shows that parallel classifier and bagging
complement each other

Classifiers EER (%)
50 parallel classifiers with 1 decision tree (no bagging) 20.98
1 parallel classifier with 50 decision trees (bagging) 6.71

proper and simple technique to generate ECG heart-
beat synthesis. Also a methodology to reduce classifiers’
instability was presented and used. We used Sequential
Forward Selection along with Shapiro-Wilk’s univariate
and Royston’s multivariate normality tests to find a sub-
set of ECG heartbeat variables that exhibit multivariate
normal distribution. Our analysis suggests that more than
20 variables in the ECG heartbeats have multivariate nor-
mal distribution. Those multivariate variables capture the
main features of ECG heartbeats. Therefore, they assist
us in capturing the underlying Gaussianity of heartbeats
and further support our hypothesis that ECG heartbeats
exhibit a multivariate Gaussian distribution should devi-
ating factors not occur. ECG heartbeat synthesis was used
to generate genuine subject data to increase its sample size
in a verification biometric system. When only 20 real gen-
uine heartbeats were used and 200 synthesized heartbeats
were generated, the biometric system achieved an equal
error rate (EER) of 6.71% in comparison to a minimum
of 9.35% when data synthesis was not utilized. A biomet-
ric system with data synthesis outperformed several other
biometric systems which employed dimensionality reduc-
tion techniques. The EER of the biometric system with
data synthesis outperformed PCA by 3.21%, probabilistic
PCA by 6.76%, Isomap by 9.45%, local linear embedding
by 8.11%, and Laplacian by 6.72%.

Classifier instability is problematic especially when the
sample size of the data is small. Bagging is usually used
to reduce such effect, so we used it; however, to further
reduce instability, we proposed to use a parallel classi-
fier scheme. All classifiers were trained with the same set
of genuine data while each classier was trained with a
different set of imposter data. This method reduced clas-
sifier instability. Through this scheme, we could reduce
the true acceptance rate instability from 6.52% standard
deviation to 1.94% standard deviation. The proposed con-
tributions are expected to produce promising results in
other applications.

Currently, we exploited the Gaussianity of ECG heart-
beats; nevertheless, other approaches such as deep learn-
ing to generate data can be researched in the future. Our
preliminary results with deep learning achieve promising
results. Furthermore, the maximum number of synthe-
sized data before they start concealing the real genuine
data might be set up as an optimization problem, and this
is also left as a future work.
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