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Abstract

Protein-protein interaction (PPI) prediction is a central task in achieving a better understanding of cellular and
intracellular processes. Because high-throughput experimental methods are both expensive and time-consuming,
and are also known of suffering from the problems of incompleteness and noise, many computational methods have
been developed, with varied degrees of success. However, the inference of PPI network from multiple heterogeneous
data sources remains a great challenge. In this work, we developed a novel method based on approximate Bayesian
computation and modified differential evolution sampling (ABC-DEP) and regularized laplacian (RL) kernel. The
method enables inference of PPI networks from topological properties and multiple heterogeneous features including
gene expression and Pfam domain profiles, in forms of weighted kernels. The optimal weights are obtained by ABC-
DEP, and the kernel fusion built based on optimal weights serves as input to RL to infer missing or new edges in the
PPI network. Detailed comparisons with control methods have been made, and the results show that the accuracy of
PPI prediction measured by AUC is increased by up to 23%, as compared to a baseline without using optimal weights.
The method can provide insights into the relations between PPIs and various feature kernels and demonstrates strong
capability of predicting faraway interactions that cannot be well detected by traditional RL method.
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1 Introduction
Uncovering protein-protein interaction (PPI) is crucial to
having a better understanding of intracellular signaling
pathways, modeling of protein complex structures and
elucidating various biochemical processes. Although sev-
eral high-throughput experimental methods, such as yeast
two-hybrid system and mass spectrometry method, have
been used to determine a larger number of protein inter-
actions, these methods are known to be prone to having
high false-positive rates, besides of their high cost. There-
fore, efficient and accurate computational methods for
PPI prediction are urgently needed.
Generally, current computational methods for PPI pre-

diction can be classified into two categories: A) pair-
wise biological similarity based methods and B) network
level-based methods. For category A, computational
approaches have been developed to predict if any given
pair of proteins interact with each other, based on

*Correspondence: liliao@udel.edu
1Department of Computer and Information Sciences, University of Delaware,
18 Amstel Avenue, 19716 Newark, DE, USA
Full list of author information is available at the end of the article

various properties such as sequence homology, gene
co-expression and phylogenetic profiles [1–5]. More-
over, some previous work also demonstrated that three-
dimensional structural information, when available, can
be used to predict PPIs with accuracy superior to predic-
tions based on non-structural evidence [6, 7]. However,
with no first principles to tell deterministically yet if two
given proteins interact or not, the pair-wise biological
similarity based on various features and attributes can
run out its predictive power, as often the signals may be
too weak or noisy. Therefore, recently, many researches
have been focused on integrating heterogeneous pair-wise
features, e.g., genomic features, semantic similarities, in
seek of better prediction accuracy [8–11]. It is biologi-
cally meaningful if we can disentangle the relations among
various pair-wise biological similarities and PPIs, but it is
still in early stage for the incomplete and noisy pair-wise
similarity kernels.
To circumvent the limitations with using pair-wise bio-

logical similarity, efforts have also been made to investi-
gate PPI prediction in the context of networks, which may
provide extra information to resolve ambiguities incurred
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at pairwise level. A network can be constructed from
reliable pair-wise PPIs, with nodes representing proteins
and edges representing interactions. Topological features,
such as the number of neighbors, can be collected for
nodes and then are used to measure the similarity for
any given node pair to make PPI prediction for the cor-
responding proteins [12–15]. Inspired by the PageRank
algorithm [16], variants of random walk-based methods
have been proposed to go beyond these node centric topo-
logical features to get the whole network involved; the
probability of interaction between given two proteins is
measured in terms of how likely a random walk in the
network starting at one node will reach the other node
[17–19]. These methods are suitable for PPI prediction in
cases when the task is to find all interacting partners for
a particular protein, by using it as the start node for ran-
dom walks. The computational cost increases from O(N)

to O(N2) for all-against-all PPI prediction. To overcome
the limitation of single start-node randomwalk, many ker-
nels on network for link prediction and semi-supervised
classification have been systemically studied [20], which
can measure the random-walk distance for all node pairs
at once. Compared with the random walk methods, ker-
nel methods are obviously more efficient and applicable to
various network types. But, both the variants of random
walk and random walk-based kernels cannot differenti-
ate faraway interacting candidates well. Besides, instead of
computing proximity measures between nodes from the
network structure directly, Kuchaiev et al. and Cannistraci
et al. proposed geometric de-noise methods that embed
PPI network into a low-dimensional geometric space, in
which protein pairs that are closer to each other represent
good candidate interactions [1, 21].
Furthermore, when the network is represented as an

adjacent matrix, the prediction problem can be trans-
formed into a spectral analysis and matrix completion
problem. For example, Symeonidis et al. [22] did link pre-
diction for biological and social networks based on multi-
way spectral clustering. Wang et al. [23] and Krishna
et al. [24] predicted PPI interactions through matrix
factorization-based methods. By and large, the prediction
task will be reduced to convex a optimization problem,
and the performance depends on the objective func-
tion, which should be carefully designed to ensure fast
convergence and avoidance of being stuck in the local
optima.
The two kinds of methods, pair-wise biological

similarity-based methods and network level-based meth-
ods, can be mutually beneficial. For example, weights can
be assigned to edges in the network using pair-wise bio-
logical similarity scores. In Backstrom et al. [19], a super-
vised learning task is proposed to learn a function that
assigns weighted strengths to edges in the network such
that a random walker is more likely to visit the nodes to

which new links will be created in the future. The matrix
factorization-based methods proposed byWang et al. [23]
and Krishna et al. [24] also included multi-modal biolog-
ical sources to enhance the prediction performance. In
these methods, however, only the pair-wise features for
the existing edges in the network will be utilized, even
though from a PPI prediction perspective, what is partic-
ularly useful is to incorporate pair-wise features for node
pairs that are not currently linked by a direct edge but
will if a new edge (PPI) is predicted. Therefore, it would
be of great interest if we can infer PPI network directly
from multi-modal biological features kernels that involve
all node pairs. In Yamanishi et al. [25], a method is devel-
oped to infer protein networks from multiple types of
genomic data based on a variant of kernel canonical cor-
relation analysis (CCA). In that work, all genomic kernels
are simply added together, with no weights to regulate
these heterogeneous and potentially noisy data sources for
their contribution towards PPI prediction. Also, it seems
that the partial network needed for supervised learning
based on kernel CCA needs to be sufficiently large, e.g.,
a leave-one-out cross validation is used, to attain good
performance.
In this paper, we propose a new method based on ABC-

DEP sampling method and regularized Laplacian (RL)
kernel to infer PPI networks from multiple hetergeneous
data. The method uses both topological features and vari-
ous genomic kernels, which are weighted to form a kernel
fusion. The weights are optimized using ABC-DEP sam-
pling [26]. Unlike data fusion with genomic kernels for
binary classification [27], the combined kernel in our case
will be used instead to create a regularized Laplacian ker-
nel [20, 28] for PPI prediction. We demonstrate how the
method circumvents the issue of unbalanced data faced
by many machine-learning methods in bioinformatics.
One main advantage of our method is that only a small
partial network is needed for training in order to make
the inference at the whole network level. Moreover, the
results show that our method works particularly well with
detecting interactions between nodes that are far apart
in the network, which has been a difficult task for other
methods. Tested on Yeast PPI data and compared to two
control methods, traditional regularized Laplacian ker-
nel method and regularized Laplacian kernel based on
equally weighted kernels, our method shows a signifi-
cant improvement of over 20% increase in performance
measured by ROC score.

2 Methods and data
2.1 Problem definition
Formally, a PPI network can be represented as a graph
G = (V,E) with V nodes (proteins) and E edges (interac-
tions). G is defined by the adjacency matrix A with V ×V
dimension:
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Ai,j =
{
1, if (i, j) ∈ E
0, if (i, j) /∈ E (1)

where i and j are two nodes in the nodes set V , and (i,j)
represents an edge between i and j, (i,j) ∈ E. The graph is
called connected if there is a path of edges to connect any
two nodes in the graph. For supervised learning, we divide
the network into three parts: connected training network
Gtn = (V ,Etn), validation set Gvn = (Vvn,Evn), and test-
ing set Gtt = (Vtt ,Ett). For Gtn, it consists of a minimum
spanning tree, augmented with a small set of randomly
selected edges. Because all edges are equally weighted,
each time a minimum spanning tree is newly built, it will
be different from a previous one. And Gvn and Gtt are two
non-overlapping subsets of edges randomly chosen from
the edges that are not in Gtn.
A kernel is a symmetric positive definite matrix K ,

whose elements are defined as a real-valued function
K(x, y) satisfying K(x, y) = K(y, x) for any two proteins
x and y in the data set. Intuitively, the kernel for a given
dataset can be regarded as ameasure of similarity between
protein pairs with respect to the biological properties,
from which kernel function takes its value. Treated as an
adjacency matrix, a kernel can also be thought of as a
complete network in which all the proteins are connected
by weighted edges. Kernel fusion is a way to integrate
multiple kernels from different data sources by a linear
combination. For our task, this combination is made of
the connected training network and various feature ker-
nels Ki, i = 1, 2, 3 . . . n by optimized weights Wi, i =
0, 1, 2, 3 . . . n, which formally is defined by Eq. (2)

Kfusion = W0Gtn +
n∑

i=1
WiKi (2)

Note that the training network is incomplete, i.e., with
many edges taken away and reserved as testing exam-
ples. Therefore, our inferring task is to predict or recover
the interactions in the testing set Gtt based on the kernel
fusion.

2.2 How to infer PPI network?
Once the kernel fusion is obtained, it will be used to make
PPI inference, in the spirit of random walk. However,
instead of directly doing random walk, we apply regu-
larized Laplacian (RL) kernel to the kernel fusion, which
allows for PPI inference at the whole network level. The
regularized Laplacian kernel [28, 29] is also called the
normalized random walk with restart kernel in Mantrach
et al. [30] because of the underlying relations to the ran-
dom walk with restart model [17, 31]. Formally, it is
defined as Eq. (3)

RL =
∞∑
k=0

αk(−L)k = (I + α ∗ L)−1 (3)

where L = D − A is the Laplacian matrix made of the
adjacency matrix A and the degree matrix D; and 0 <

α < ρ(L)−1 where ρ(L) is the spectral radius of L. Here,
we use kernel fusion in place of the adjacent matrix, so
that various feature kernels in Eq. (2) are incorporated in
influencing the random walk with restart on the weighted
networks [19]. With the regularized Laplacian matrix, no
random walk is actually needed to measure how “close”
two nodes are and then use that closeness to infer if the
two corresponding proteins interact. Rather, RLK is the
inferred matrix, and is interpreted as a probability matrix
P in which Pi,j indicates the probability of an interac-
tion for protein i and j. Algorithm 1 shows the general
steps to infer PPI network from a optimal kernel fusion.
Figure 1 contains a toy example to show the process of
inference, where both the kernel fusion and the regular-
ized Laplacian are shown as heatmap. The lighter a cell
is, the more likely the corresponding proteins. However,
to ensure good inference, it is important to learn opti-
mal weights for Gtn and various Ki to build kernel fusion
Kfusion. Otherwise, given the multiple heterogeneous ker-
nels from different data sources, the kernel fusion without
optimized weights is likely to generate erroneous infer-
ence on PPI.

Algorithm 1 PPI Inference
Input: RL ← Regularized Laplacian prediction kernel

Gtn ← training network
Gvn ← validation set
Gtt ← testing set
K ← feature kernels

Output: Inferred network
1: Wopt ← ABC-DEP(Gtn,Gvn,RL,K)

2: OPT-K← Wopt
0 Gtn +

n∑
i=1

Wopt
i Ki // OPT-K is the

optimal kernel fusion based on optimal weights
3: RLOPT-K ← RL(OPT-K) // Apply RL model to the

kernel fusion
4: Rank RLOPT-K and infer Gtt

2.3 ABC-DEP sampling method for learning weights
In this work, we revise the ABC-DEP sampling method
[26] to optimize the weights for kernels in Eq. (2). ABC-
DEP sampling method, based on approximate Bayesian
computation with differential evolution and propagation,
shows strong capability of accurately estimating param-
eters for multiple models at one time. The parameter
optimization task here is relatively easier than that in [26]
as there is only one RL-based prediction model. Specif-
ically, given the connected training network Gtn and N
feature kernels in Eq. (2), the length of the particle in
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Fig. 1 An example to show the inference process. The example comprises of a small module in the DIP yeast PPI network, which consists of protein
P25358 (ELO2, elongation of fatty acids protein 2) and its 1 ∼ 3 hops away neighbors. The kernel fusion and the regularized Laplacian are shown as
heatmap. The lighter a cell is, the more likely the corresponding proteins interact

ABC-DEP would be N + 1, where particle can also be
seen as a sample including the N + 1 weight values. As
mentioned before, the PPI network is divided into three
parts: the connected training network Gtn, validation set
Gvn and testing set Gtt . To obtain the optimal particle(s),
a population of particles with size Np is intialized, and
ABC-DEP sampling is run iteratively until a particle is
found in the evolving population that maximizes the AUC
of inferring training network Gtn, validation set Gvn. The
validation set Gvn is used to avoid over-fitting as the algo-
rithm converges. Algorithm 2 shows the detailed sampling
process.
Algorithm 2 is the main structure in which a popula-

tion of particles with equal importance is initialized and
each particle consists of kernel weights randomly gener-
ated from a uniform prior. Given the particle population,
Algorithm 3 samples through the parameter space for
good particles and assigns them weights according to the
predicting quality of their corresponding kernel fusion
Kfusion. Note that, different from the ABC-DEP sampling
method in [26] where the logarithm of the Boltzmann
distribution is adopted, here, we accept or reject a new
candidate particle based on Boltzmann distribution with
simulated annealing method [32]. Through the evolution
process, bad particles will be filtered out and good par-
ticles will be kept for the next generation. We repeat
this process until the algorithm converges. The optimal
particle is used to build kernel fusion Kfusion for PPI
prediction.

Algorithm 2 ABC-DEP
Input: Gtn,Gvn,RL,K

M ← iteration times
Np ← particles

Output: Wopt

1: while t ≤ M do
2: if t = 1 then
3: Initialize Np particles, each particle contains

weights Wi, 0 < Wi < 1, i = 0, 2, 3 . . . n for
training network and n-1 feature kernels

4: Pt , It ← {Pi, Ii}Np
i=1 // Pi is a particle, Ii is the

weight or importance of Pi. Pt , It represents the
tth generation of particles and weights.

5: else
6: {Pt , It}Np

i=1 ← Sampling((Pt−1, It−1))
7: end if
8: (Pt+1, It+1) ← DEP(Pt , It ,Gtn,Gvn,RL,K)

9: t ← t + 1
10: end while
11: Normalize(P, I)
12: Wopt ← Pi if Ii = max(I)

2.4 Data and kernels
We use yeast PPI networks downloaded from DIP
database (Release 20150101) [33] to test our algorithm.
Notably, some interactions without Uniprotkb ID have
been filtered out in order to do name mapping and make
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Algorithm 3 DEP
Input: Gtn,Gvn,RL,K ,Np
Output: P, I
1: for i = 1 to Np do
2: Randomly select Pf ,Pj,Pk where i �= j �= k �= f

// Pi is the target particle, Pf , Pj and Pk are three
randomly selected particles. Pi.θ , Pj.θ , Pk .θ and Pf .θ
represent particles’ parameter vectors that consist
of weights for feature kernels.

3: if Pi.θ = Pj.θ = Pk .θ = Pf .θ then
4: Zi ← Propagation(Pi)
5: else
6: Zi ← DifferentialEvolution(Pi,Pj,Pk ,Pf )
7: end if
8: end for
9: for i = 1 to Np do

10: r′Gtn
, r′Gvn

= Inference(RL,Zi,K ,Gtn,Gvn)

11: r′ = r′Gtn
+ r′Gvn

// In the Inference function, particle
Zi is used to weight kernels inK to get kernel fusion
Kfusion. r′Gtn

, r′Gvn
represent results (AUCs) of recov-

ering Gtn and Gvn based on Kfusion respectively

12: rGtn , rGvn ← Inference(RL,Pi,K ,Gtn,Gvn).
13: r ← rGtn + rGvn

14: if rand(0, 1) < e
r′−r
T(t) then

15: Pi ← Zi, Ii ← Ii ∗ β
α−r′

16: else
17: Pi ← Pi, Ii ← Ii ∗ β

α−r // β and α are two positive
parameters that can be used to update particles’
importances and adjust converging speed.

18: end if
19: end for
20: Normalize(P, I)

use of genomic similarity kernels [27]. As a result, the PPI
network contains 5093 proteins and 22,423 interactions,
from which the largest connected component is used to
serve as golden standard network. It consists of 5030 pro-
teins and 22,394 interactions. Only tens of proteins and
interactions are not included in the largest connected
component, whichmakes the golden standard data almost
as complete as the original network. As mentioned before,
the golden standard PPI network is divided into three
parts that are connected training network Gtn, validation
set Gvn and testing set Gtt , where training network Gtn is
included in the kernel fusion, validation set Gvn is used to
find optimal weights for feature kernels and testing setGtt
is used to evaluate the inference capability of our method.
Six feature kernels are obtained from http://noble.gs.

washington.edu/proj/sdp-svm/ for this study and the fol-
lowing list is about the detailed information of these
kernels.

Gtn: Gtn is the connected training network that
provides connectivity information. It can also be
thought of as a base network to do the inference.
KJaccard [34]: This kernel measure the similarity of
protein pairs i, j in term of neigbors(i)∩neighbors(j)

neighbors(i)∪neighbors(j) .
KSN : It measures the total number of neighbors of
protein i and j, KSN = neighbors(i) + neighbors(j).
KB [27]: It is a sequence-based kernel matrix that is
generated using the BLAST [35].
KE [27]: This is a gene co-expression kernel matrix
constructed entirely from microarray gene
expression measurements.
KPfam [27]: This is a generalization of the previous
pairwise comparison-based matrices in which the
pairwise comparison scores are replaced by
expectation values derived from hidden Markov
models (HMMs) in the Pfam database [36].

These kernels are positive semi-definite. Please refer to
[27] for detailed analysis (or proof). Moreover, Eq. (2)
is guaranteed to be positive semi-definite, because basic
algebraic operations such as addition, multiplication, and
exponentiation preserve the key property of positive semi-
definiteness [37]. Finally, all these kernels are normalized
to the scale of (0, 1) in order to avoid bias.

3 Results and discussion
3.1 Inferring PPI network
To show how well our method can infer PPI network
from the kernel fusion, we make the task challenging by
dividing the golden standard yeast PPI network into the
following three parts: the connected training network Gtn
has 5030 nodes and 5394 edges, the validation set Gvn has
1000 edges, and the testing set Gtt has 16,000 edges. This
means that we need to infer and recover a large number
of testing edges based on the kernel fusion and a small
validation set. Firstly, we check the converging process
of finding the optimal weights that used to combine fea-
ture kernels, which is shown by the Fig. 2. It clearly shows
that when the AUC of predicting the training networkGtn
reaches to 1 quickly, but the AUC of predicting the val-
idation set Gvn is still in an upward trend. So Gtn alone
cannot guarantee the optimality of the weights when the
algorithm converges, which is the reason the validation
set Gvn is used. After several iterations, the ABC-DEP
algorithm is converged when both AUCs have become
steady.
With the optimal weights obtained from ABC-DEP

sampling, we build the kernel fusion Kfusion by Eq. (2).
PPI network inference is made with RL kernel Eq. (3).
The performance of inference is evaluated by how well
the testing set Gtt is recovered. Specifically, all node pairs
are ranked in decreasing order by their edge weights in
the RL matrix, and edges in the testing set Gtt are then

http://noble.gs.washington.edu/proj/sdp-svm/
http://noble.gs.washington.edu/proj/sdp-svm/
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Fig. 2 The converging process of ABC-DEP sampling used to obtain
optimal weights

labeled as positive and node pairs with no edges in G are
labeled as negative. A ROC curve is plotted for true pos-
itive vs. false positives, by running down the ranked list
of node pairs. Figure 3 shows the ROC curves and AUCs
for three PPI network inferences: RLOPT-K, RLGtn , and
RLEW-K, where RLOPT-K indicates the RL-based PPI infer-
ence is from kernel fusion that built by optimal weights,
RLGtn indicates RL-based PPI inference is solely from the
training network Gtn, and RLEW-K represents RL-based
PPI inference is from kernel fusion built by equal weights,
e.g., Wi = 1, i = 0, 1 . . . n. Additionally, Gset ∼ n indi-
cates that there is n number of edges in the set Gset , e.g.,
Gtn ∼ 5394 means the connected training network Gtn
contains 5394 edges. As shown by Fig. 3, the PPI reference
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Fig. 3 ROC curves of predicting Gtt ∼ 16, 000 by RLGtn∼5394, RLOPT-K ,
RLEW-K , and RLWOLP-K-i

RLOPT-K based on our method significantly outperforms
the other two control methods, with a 20% increase over
RLGtn and a 23.6% over RLEW-K in terms of AUC. It is
noted that the AUC of PPI inference RLEW-K based on
the equally weighted built kernel fusion is even worse
than that of RLGtn based on a really small training net-
work. It means there should be a lot of noises if we just
naively combine different feature kernels to do PPI pre-
diction. Our method provides an effective way to make
good uses of various features for improving PPI prediction
performance.
In Fig. 3, we also compared with another method,

WOLP, which uses linear programming to optimize the
weights Wi for the various kernel features [38]. It can
be seen that WOLP, with AUC at about 0.83, also per-
forms signigicantly better than the baseline, indicating
that the method is effective in weighting various features
to improve PPI inference. Note that although reference
[38] has “random walk” in its title, the method WOLP
does not do sampling; instead, the weights for kernel fea-
tures are optimized by linear programming, constrained
with the transition matrix from the training network for
any would-be random walk over the PPI network when
kernel features are incorporated. As such, WOLP is more
computationally efficient but with a trade-off of slightly
worse performance as compared to ABC-DEP, which has
the best AUC, 0.86, in this study.

3.2 Effects of the training data
Usually, given a golden standard data, we need to retrain
the prediction model for different divisions of training
sets and testing sets. However, if optimal weights have
been found for building kernel fusion, our PPI network
inference method enable us to train the model once, and
do prediction or inference for different testing sets. To
demonstrate that, we keep the two PPI inferences RLOPT-K
and RLEW-K obtained before (in last section) unchanged
and evaluate the prediction ability for different testing
sets. We also examine how performance is affected by
sizes of various sets. Specifically, while the size of train-
ing network Gtn for RLGtn increases, sizes of RLOPT-K and
RLEW-K are kept unchanged. Therefore, we design sev-
eral experiments by dividing the golden standard network
into Gi

tn and Gi
tt , i = 1, . . . , n, and building PPI inference

RLGi
tn
to predict Gi

tt for every time. To make comparison,
we also use RLOPT-K and RLEW-K to predict Gi

tt . Figure 4
shows the ROC curves of predicting Gtt ∼ 15000 by
RLGtn∼7394, RLOPT-K and RLEW-K. Figures 5, 6 and 7 show
similar results but just for different Gtn and Gtt sets. As
shown by the Figs. 4, 5, 6, and 7, RLOPT-K trained on only
5394 golden standard edges still performs better than the
control methods that employ significantly more golden
standard edges.
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3.3 Detection of interacting pairs far apart in the network
It is known that the basic idea of using random walk or
random walk based kernels [17–20] for PPI prediction is
that good interacting candidates usually are not faraway
from the start node, e.g., only 2,3 edges away in the net-
work. Consequently, for some existing network-level link
prediction methods, testing nodes have been chosen to be
within a certain distance range, which largely contributes
to their good performance reported. In reality, however,
a method that is capable and good at detecting interact-
ing pairs far apart in the network can be even more useful,
such as in uncovering cross talk between pathways that
are not nearby in the PPI network.
To investigate how our proposed method performs at

detecting faraway interactions, we still use RLGtn∼6394,
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Fig. 6 ROC curves of predicting Gtt ∼ 13, 000 by RLGtn∼9394, RLOPT-K ,
and RLEW-K

RLOPT-K, and RLEW-K for inferring PPIs, but we select node
pairs (i, j) that satisfy dist(i, j) > 3 given Gtn ∼ 6394 from
Gtt as new testing set and name it G(dist(i,j)>3)

tt . Figure 8
shows that RLOPT-K has not only a significant margin over
the control methods in detecting long-distance PPIs but
also maintains a high ROC score of 0.8438 comparable to
that of all PPIs. In contrast, RLGtn∼6394 performs poorly
and worse than RLEW-K, which means the traditional RL
kernel based on adjacent training network alone cannot
detect faraway interactions well.

3.4 Analysis of weights and efficiency
As the method incorporates multiple heterogeneous data,
it can be insightful to inspect the final optimal weights. In
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and RLEW-K
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our case, the optimal weights are 0.8608, 0.1769, 0.9334,
0, 0.0311, 0.9837, respectively for feature kernels Gtn,
KJaccard, KSN , KB, KE , and KPfam. These weights indicate
that KSN and KPfam are the predominant contributors to
PPI prediction. This observation is consistent with the
intuition that proteins interact via interfaces made of con-
served domains [39], and PPI interactions can be classified
based on their domain families and domains from the
same family tend to interact [40–42]. Although the true
strength of our method lies in integrating multiple het-
erogeneous data for PPI network inference, the optimal
weights can serve as a guidance to select most relevant
features when time and resources are limited.
Lastly, despite of the common concern of time efficiency

with methods based on evolutionary computing, the issue
is mitigated in our case. In our experiments, only a small
number of particles, 150 to be exact, is needed for the ini-
tial population for ABC-DEP sampling. Also, as shown in
the Fig. 2, our ABC-DEP algorithm is quickly converged,
within 10 iterations. Moreover, since the PPI inference
from RLOPT-K is shown to be less sensitive to the size of
training data, only 5394 gold standard edges, less than
25% of the total number, are used. And, we do not need
to retrain the model for different testing data, which is
another time-saving property of our method.

4 Conclusions
In this work, we developed a novel supervised method
that enables inference of PPI networks from topological
and genomic feature kernels in an optimized integra-
tive way. Tested on DIP yeast PPI network, the results
show that our method exhibits competitive advantages
over control methods in several ways. First, the proposed

method achieved superior performance in PPI predic-
tion, as measured by ROC score, over 20% higher than
the baseline, and this margin is maintained even when
the control methods use a significantly larger training
set. Second, we also demonstrated that by integrating
topological and genomic features into regularized Lapla-
cian kernel, the method avoids the short-range problem
encountered by random-walk based methods—namely
the inference becomes less reliable for nodes that are far
from the start node of the randomwalk, and show obvious
improvements on predicting faraway interactions. Lastly,
our method can also provide insights into the relations
between PPIs and various similarity features of protein
pairs, thereby helping us make good use of these features.
As more features with respect to proteins are collected
from various -omics studies, they can be used to char-
acterize protein pairs in terms of feature kernels from
different perspectives. Thus, we believe that our method
provides a useful framework in fusing various feature ker-
nels from heterogeneous data to improve PPI prediction.
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