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Abstract

In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label
distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior
distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the
expected misclassification error relative to the posterior distribution. From an application perspective, prior
construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features
and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this
paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE
in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal
Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift
vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary
history between two species.
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1 Introduction
A purely data-driven classifier design with small sam-
ples encounters a fundamental conundrum: since the
error rate of a classifier quantifies its predictive accuracy,
the salient epistemic attribute of any classifier and re-
sampling strategies such as cross-validation and bootstrap
is generally very inaccurate on small samples due to exces-
sive variance and lack of regression with the true error
[1]. The inability to satisfactorily estimate the error with
model-free methods with small samples implies that clas-
sifier error estimation is virtually impossible without the
use of prior information. Prior knowledge can be incor-
porated in a Bayesian framework by assuming that the
feature-label distribution belongs to an uncertainty class
of feature-label distributions governed by a prior distri-
bution [2, 3]. Given the latter, in conjunction with sample
data, one can optimally estimate the error of any classi-
fier, relative to the mean square error (MSE) between the
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true and estimated errors, where expectations are taken
with respect to a posterior distribution derived from the
prior distribution and the data [4, 5]. Hence, optimality
is with respect to our prior knowledge and the data. Fur-
thermore, one can derive an optimal classifier relative to
the expected error of the classifier over the posterior dis-
tribution, this being called the optimal Bayesian classifier
(OBC) [6, 7]. Closed-form solutions have been developed
for multinomial and Gaussian models. In other situations,
Markov Chain Monte Carlo (MCMC) methods can be
used [8].
Having developed the statistical theory, one is con-

fronted with an engineering problem: transform scientific
knowledge given in some mathematical form into a prior
distribution. Intuitively, given a set of mathematical rela-
tions among the features and labels, these relations con-
strain the uncertainty class of feature-label distributions
that could potentially govern the classification and the rel-
ative strengths of the relations can be transformed so as
to determine the probability mass of the prior distribu-
tion. For instance, in phenotype classification based on
gene expression, genetic regulatory pathways constitute
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graphical prior knowledge and this prior knowledge can
be employed to formulate a prior distribution governing
the uncertainty class of feature-label distributions [9, 10].
Another genomic application involves using prior knowl-
edge concerning RNA-seq data to form sequence-based
classifiers [8].
From a general perspective, when using Bayesian meth-

ods, prior construction constitutes the highest hurdle. A
half century ago, E. T. Jaynes remarked,

Bayesian methods, for all their advantages, will not be
entirely satisfactory until we face the problem of
finding the prior probability squarely [11].

The aim of this paper is to utilize prior knowledge in the
form of stochastic differential equations (SDEs) to clas-
sify time-series data. Although we will confine ourselves
to a Gaussian problem so that we can take advantage of
existing closed-form OBC representations, one can envi-
sion further applications using MCMC methods. Hence,
the approach taken in the present paper may lead to uti-
lizing SDEs across a number of time-series classification
problems, keeping in mind that SDEs play a major role in
many disciplines including physics, biology, finance, and
chemistry. Vector SDEs, our concern here, have various
applications. Not only do they arise naturally in many sys-
tems with vector value states, but they also arise in many
systems where the process is restricted to lie on certain
manifolds [12].
In the stochastic setting, training data are collected over

time processes. Given certain Gaussian assumptions, clas-
sification in the SDE setting takes the same form as ordi-
nary classification in the Gaussianmodel and we can apply
the optimal Bayesian classification theory once we have a
prior distribution constructed in accordance with known
stochastic equations. In this paper, we provide the mathe-
matical framework to synthesize an OBC in the presence
of prior knowledge induced in the form of SDEs govern-
ing the dynamics of the system. We consider a vector SDE
in integral form involving a drift vector and dispersion
matrix, develop the OBC between two models, and exam-
ine via synthetic experiments the effects of uncertainty in
the drift vector and dispersion matrix.
We compare the performance of the OBC with

quadratic discriminant analysis (QDA), a classical
approach to building classifiers in the Gaussianmodel (see
Additional file 1: Section I for definition of QDA). Such
comparisons are useful because, even though the OBC is
optimal given the uncertainty, its optimality is on average
across the uncertainty class, so that its performance
advantage varies for different feature-label distributions
in the uncertainty class (and can be disadvantageous for
some distributions, although these will have small proba-
bility mass in the posterior distribution). Comparison to
QDA is instructive because, as we will explain in the next

section, QDA is a sample-based approximation to the
optimal classifier for the true feature-label distribution.
In addition to synthetic experiments, we apply optimal
Bayesian classification using a form of the Ornstein-
Uhlenbeck process that has been employed for modeling
the evolutionary change of species; specifically, we use a
set of SDEs to construct a classifier to differentiate the
evolutionary history between two species.

2 Background
2.1 Classification
In a two-class classification, the population is character-
ized by a feature-label distribution F for a random pair
(X,Y ), where X is a vector of p features and Y is the
binary label, 0 or 1, of the class containing X. The prior
class probabilities are defined by cj = P(Y = j) and the
class-conditional densities by pj(x) = p(x | Y = j), for
j = 0, 1. To avoid trivialities, we assume min{c0, c1} �= 0.
A classifier is a function ψ(X) assigning a binary label to
each feature vector X. The error, ε[ψ], of ψ is the prob-
ability P(ψ(X) �= Y ), which can be decomposed into
ε = c0ε0 + c1ε1, where εj = P(ψ(X) = 1 − j|Y = j), for
j = 0, 1. A classifier with minimum error among all clas-
sifiers is known as a Bayes classifier for F. The minimum
error is called the Bayes error. Epistemologically, the error
is the key issue since it quantifies the predictive capacity.
In practice, F is unknown and a classification rule � is

used to design a classifier ψn from a random sample Sn =
{(X1,Y1), (X2,Y2), . . . , (Xn,Yn)} of pairs drawn from F. If
feature selection is involved, then it is part of the classi-
fication rule. Since the true classifier error ε[ψn] depends
on F, which is unknown, ε[ψn] is unknown. The true error
must be estimated by an estimation rule,�. Thus, the ran-
dom sample Sn yields a classifier ψn = �(Sn) and an error
estimate ε̂[ψn]= �(Sn) (see Additional file 1: Section II
for more information).
When a large amount of data is available, the sample

can be split into independent training and test sets, the
classifier being designed on the training data and its error
being estimated by the proportion of errors on the test
data; however, when data are limited, the sample cannot
be split without leaving too little data to design a good
classifier. Hence, training and error estimation must take
place on the same data set. As noted in Section 1, accurate
error estimation is virtually impossible with small samples
in the absence of distributional assumptions.

2.2 Optimal Bayesian classification
Distributional assumptions can be imposed by defining
a prior distribution over an uncertainty class of feature-
label distributions. This results in a Bayesian approach
with the uncertainty class being given a prior distribu-
tion and the data being used to construct a posterior
distribution.
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Let �0 and �1 denote the class-0 and class-1 condi-
tional distributions, respectively; let c be the probability
of a point coming from �0 (the “mixing” probability); and
let �0 and �1 be parameterized by θ0 and θ1, respectively.
The overall model is parameterized by θ = (c, θ0, θ1) with
prior distribution π(θ). Given a random sample, Sn, a clas-
sifier ψn is designed and we wish to minimize the MSE
between its true error, ε, and an error estimate, ε̂. The
minimum mean square error (MMSE) error estimator is
the expected true error, ε̂(ψn, Sn) = Eθ [ ε(ψn, θ)|Sn]. The
expectation given the sample is over the posterior den-
sity of θ , denoted by π∗(θ). Thus, we write the Bayesian
MMSE error estimator as ε̂ = Eπ∗ [ ε].
The Bayesian error estimate is not guaranteed to be

the optimal error estimate for any particular feature-label
distribution but optimal for a given sample, and assum-
ing the parameterized model and prior probabilities, it is
both optimal on average with respect to MSE and unbi-
ased when averaged over all parameters and samples. To
facilitate analytic representations, we assume c, θ0, and
θ1 are all mutually independent prior to observing the
data. Denote the marginal priors of c, θ0, and θ1 by π(c),
π(θ0), and π(θ1), respectively, and suppose data are used
to find each posterior, π∗(c), π∗(θ0), and π∗(θ1), respec-
tively. Independence is preserved, i.e., π∗(c, θ0, θ1) =
π∗(c)π∗(θ0)π∗(θ1) [4].
If ψn is a trained classifier given by ψn (x) = 0 if

x ∈ R0 and ψn (x) = 1 if x ∈ R1, where R0 and R1
are measurable sets partitioning the sample space, then
the Bayesian MMSE error estimator can be found from
effective class-conditional densities, which are derived by
taking the expectations of the individual class-conditional
densities with respect to the posterior distribution,

f (x|y) =
∫

	y
fθy (x|y) π∗ (θy) dθy. (1)

Using these [6] (see Additional file 1: Section III for
more information),

ε̂ (ψn, Sn)=Eπ∗ [c]
∫
R1
f (x|0) dx+(1−Eπ∗ [c])

∫
R0

f (x|1) dx.
(2)

In the context of a prior distribution, an optimal
Bayesian classifier, ψOBC, is any classifier satisfying

Eπ∗ [ε(ψOBC, θ)] ≤ Eπ∗ [ε(ψ , θ)] (3)

for all ψ ∈ C, where C is an arbitrary family of classi-
fiers. Under the Bayesian framework, this is equivalent to
minimizing the probability of error,

P (ψn (X) �= Y |Sn) = Eπ∗ [P (ψn (X) �= Y |θ , Sn)]
= ε̂ (ψn, Sn) .

(4)

If C is the set of all classifiers with measurable decision
regions (which we will assume), then an optimal Bayesian
classifier, ψOBC, satisfying (3) for all ψ ∈ C exists and is
given pointwise by [6]

ψOBC (x) =
{
0 if Eπ∗ [c] f (x|0) ≥ (1 − Eπ∗ [c] )f (x|1) ,
1 otherwise.

(5)

In many applications, especially in biomedicine, the
sample Sn is obtained by first deciding how many sample
points will be taken from each class and then randomly
sampling from each class separately, the resulting sample
said to be “separately sampled.” With separate sampling,
the data cannot be used to generate a posterior distribu-
tion for c, so that c must be known. Stratified sampling is
a special case of separate sampling in which the sample is
drawn so that the proportion of sample points from class
0 is equal to c. In such a case, there is no posterior Eπ∗ [c]
and Eπ∗ [c] is replaced by c in (5). We will utilize stratified
sampling in our examples.

3 Binary classification of Gaussian processes
In this section, we frame the setting in which we are work-
ing and then define the problem of binary classification
in the context of Gaussian processes. To begin with, a
collection {Xt : t ∈ T} of Rp-valued random variables
defined on a common probability space (
,F ,P) indexed
by a parameter t ∈ T ⊂ R (here assumed to be time)
and F being a σ -algebra of subsets of the sample space

 (events) constitutes a stochastic process X with state
space Rp. Throughout this work, we consider F as the σ -
algebra of Borel subsets of Rp. A stochastic process X is
adapted to an increasing family of σ -algebra {Ft : t ≥ 0}
(a filtration) if for each t ≥ 0, Xt is Ft-measurable.
We study classification in the context of multivariate

Gaussian processes (see Additional file 1: Section IV for a
review of literature pertaining to classification of stochas-
tic processes). Consider the p-dimensional column ran-
dom vectors Xt1 , Xt2 , ...., XtN . A random process X is
a multivariate Gaussian process if any finite-dimensional
vector

[
XT
t1 ,X

T
t2 , ...,X

T
tN
]T possesses a multivariate normal

distributionN
(
μtN ,�tN

)
, where

μtN =
[
μT
t1 ,μ

T
t2 , ...,μ

T
tN

]T
Np×1

, (6)

with μti = E[Xti ], and �tN is the Np × Np covariance
matrix dependent on tN =[ t1, t2, ..., tN ]T and structured
as

�tN =

⎡⎢⎢⎢⎣
�t1,t1 �t1,t2 ... �t1,tN

�t2,t1 �t2,t2 ... �t2,tN
... ... ... ...

�tN ,t1 �tN ,t2 ... �tN ,tN

⎤⎥⎥⎥⎦
Np×Np

, (7)
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where

�ti,tj = E
[(

Xti − E(Xti))(Xtj − E(Xtj)
T
)]

. (8)

We refer to tN as the observation time vector. For any
fixed ω ∈ 
, a sample path is a collection {Xt(ω) : t ∈ t}.
We denote a realization of X at sample path ω and time
vector tN by xtN (ω).
We consider a general framework, referred to as binary

classification of Gaussian processes (BCGP). Consider two
independent multivariate Gaussian processes X0 and X1,
where for any tN , X0 and X1 possess mean and covariance
μ0
tN and �0

tN , and μ1
tN and �1

tN , respectively. For y = 0, 1,
μ
y
tN is defined similarly to (6) with μ

y
ti = E

[
Xy
ti
]
and �

y
tN

is defined similarly to (7) with

�
y
ti,tj = E

[(
Xy
ti − E(Xy

ti)
) (

Xy
tj − E(Xy

tj)
)T]

. (9)

Let SytN denote a set of ny sample paths from process Xy

at tN ,

SytN = {
xytN (ω1), x

y
tN (ω2), . . . , x

y
tN (ωny)

}
. (10)

We assume that tN is the same for both classes. Let
xytN (ωs) denote a future test sample path observed on the
same observation time vector as the training sample paths,
where y ∈ {0, 1} indicates the label of the class-conditional
process the sample path is coming from, either X0 or
X1. Note that, as compared with the classical probabilis-
tic definition of classification where the sample points are
observations of p-dimension, here we define stochastic-
process classification in connection with a set of sample
paths, which can be considered as observations of Np
dimension. A classification problem arises from the fact
that the experimenter is blind to the class label of xytN (ωs),
i.e., to y, and desires a discriminant ψtN (.) such that

y =
{
0, if ψtN

(
xytN (ωs)

)
> 0

1, otherwise. . (11)

Other types of classification could be defined. For exam-
ple, one might be interested in classifying a test sample
path xytN+M (ωs) where the observation time vector of the
test sample path is obtained by augmenting tN by another
vector [tN+1, tN+2, ..., tN+M], where M is a positive inte-
ger. In this case, the time of observation for the future
sample path is extended. Similarly, one may define prob-
lems where the future time of observation is shrunken to
a subset of time points in tN or problems where the future
observation time vector is a set of time points totally or
partially different from time points in tN . Throughout this
work, we are mainly concerned with solving the classifi-
cation problem as defined in (11), which we refer to as
the standard type, and we discuss the feasibility of solving
other cases when possible.

3.1 General presentation of stochastic differential
equations (SDEs)

To define SDEs, we consider a diffusion process, the
most fundamental being the Wiener process. For a gen-
eral definition of a q-dimensional Wiener process, see the
Appendix. Let W = {Wt : t ≥ 0} be a q-dimensional
Wiener process. For each sample path and for 0 ≤ t0 ≤
t ≤ T , we consider a vector SDE in the integral form as
follows:

Xt(ω) = Xt0(ω) +
∫ t

t0
f (s,Xs(ω)) ds

+
∫ t

t0
G (s,Xt(ω)) dWs(ω),

(12)

where f :[0,T]×
 → R
p (the p-dimensional drift vector )

and G :[0,T]×
 → R
p×q (the p × q dispersion matrix).

The first integral in (12) is an ordinary Lebesgue integral,
and throughout this work, we assume an Itô integra-
tion for the second integral. With slightly more work, the
results can be extended to Stratonovich integration. Let
L be the σ -algebra of Lebesgue subsets of R. A function
h(t,ω) defined on a probability space (
,F ,P) belongs to
Lω
T if it is jointlyL×F measurable, h(t, .) isFt-measurable

for each t ∈[0,T], and with probability 1,
∫ T
0 h(s,ω)2ds <

∞. Let f i and gi,j denote the components of f and G,
respectively. If we assume X0(ω) is F0-measurable and
if
√|f i| ∈ Lω

T and gi,j ∈ Lω
T , then each component of

the p-dimensional process Xt(ω) is Ft-measurable [12].
The Ft-measurability of Xt(ω) along with the martingale
property ofW indicates “nonanticipativeness” of Xt(ω) in
general.
The integral Eq. (12) is commonly written in a symbolic

form as

dXt = f(t,Xt)dt + G(t,Xt)dWt , (13)

which is the representation of a vector SDE.

4 SDE prior knowledge in the BCGPmodel
Prior knowledge in the form of a set of stochastic differ-
ential equations constrains the possible behavior of the
dynamical system to an uncertainty class. If such prior
knowledge is available, then it can be used in the BCGP
model to improve classification performance. The core
underlying assumption of the BCGP model is that the
data are generated from two Gaussian processes for which
binary classification is desired. In this regard, we define
valid prior knowledge (in the form of SDEs) as a set of
SDEs with a unique solution that does not contradict the
Gaussianity assumption of the dynamics of the model.
For nonlinear f(t,Xt) and G(t,Xt) (w.r.t. to state Xt), the
solution of SDE (13) is generally a non-Gaussian process.
Fortunately, under a wide class of linear functions, the
SDE solutions are Gaussian. To wit, the SDEs become
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valid prior knowledge for each class-conditional process
defined in the BCGP model. Henceforth, we focus on this
type of SDE.
For class label y = 0, 1, the linear classes of SDEs that we

consider are defined by replacing

fy(t,Xt) = Ay(t)Xy
t + ay(t),

Gy(t,Xt) = By(t),
(14)

in (13) with Ay(t) (a p × p matrix), ay(t) (a p × 1 vector),
and By(t) (a p × q matrix), these being measurable and
bounded on [t0,T]. This results in

dXy
t =(Ay(t)Xy

t + ay(t))dt + By(t)dWy
t , Xy

t0(ω)= cy.
(15)

This initial value problem has a unique solution that is
a Gaussian stochastic process if and only if the initial con-
ditions cy are constant or normally distributed (Theorem
8.2.10 [13]). Note that in this model,Gy(t,Xt) (i.e. By(t)) is
independent of ω. Under this model, it can be shown that
the mean (at a time index ti) and the covariance matrix (at
ti and tj) of the Gaussian process Xy

t are given by [13]

my
ti = E

[
Xy
ti
] = �y(ti)

(
E[cy]+

∫ ti

t0
�y(s)−1ay(s)ds

)
(16)

and

�
y
ti ,tj = E

[(
Xy
ti − E

[
Xy
ti
]) (

Xy
tj − E

[
Xy
tj

])T]
= �y(ti)

(
E
[(
cy − E[cy]

) (
cy − E[cy]

)T]
+
∫ ti

t0
�y(u)

−1By(u)By(u)
T
(
�y(u)

−1
)T

du
)

�y(tj)T ,

(17)

where t0 ≤ ti ≤ tj ≤ T and �y(ti) is the fundamental
matrix of the deterministic equation

Ẋy
t = Ay(t)Xy

t . (18)

4.1 SDEs as perfect representatives for the dynamics of
class-conditional processes

If the SDE model presented in (15) could perfectly repre-
sent the dynamics of the underlying stochastic processes
of the BCGPmodel, then there would be no need for train-
ing sample paths. To see this, note that in this case μ

y
t and

�
y
ti,tj defined in (6) and (7) are obtained by

μ
y
tN = my

tN
�

y
tN = �

y
tN

, (19)

where

my
tN =

[
my T

t1 ,my T
t2 , ...,my T

tN

]T
Np×1

(20)

and

�
y
tN =

⎡⎢⎢⎢⎣
�

y
t1,t1 �

y
t1,t2 ... �

y
t1,tN

�
y
t2,t1 �

y
t2,t2 ... �

y
t2,tN

... ... ... ...
�

y
tN ,t1 �

y
tN ,t2 ... �

y
tN ,tN

⎤⎥⎥⎥⎦
Np×Np

, (21)

where my T
ti and �

y
ti,tj are obtained from (16) and (17),

respectively. Therefore, one can obtain the exact (or at
least approximately exact) values of the means and auto-
covariances used to characterize the Gaussian processes
involved in the BCGP model. To obtainmy

ti and �
y
ti,tj , two

approaches can be taken. First, one may analytically solve
(18) where possible and then use numerical methods to
evaluate the integrations presented in (16) and (17). For
example, if Ay(t) = Ay, i.e., being independent of t, the
solution of (18) is given by a matrix exponential as

�y(t) = eA
y(t−t0), (22)

which can be used in (16) and (17). In general, where one
may not be able to analytically solve (18), numerical meth-
ods such as the Euler-Maruyama scheme [14] can be used
to directly solve for Xy

t (ω) and obtain

m̂y
tN = 1

ly
ly∑
i=1

xy,SDEtN (ωi),

�̂
y
tN = 1

ly − 1

ly∑
i=1

(
xy,SDEtN (ωi)−x̄y,SDEtN

)(
xy,SDEtN (ωi)−x̄y,SDEtN

)T
,

(23)

where xy,SDEtN (ωi), i = 1, 2, ..., ly, are the generated sam-
ple paths obtained from solving SDEs. Since there is no
restriction on generating an arbitrary number of sam-
ple paths from Xy

t (ω), one can take ly >> Np to have
a positive definite �̂

y
tN and, at the same time, obtain

an accurate estimate of the actual values of my
tN and

�
y
tN . In this approach, the knowledge of (16) and (17)

is used in the existence of the limits limly→∞ m̂y
tN and

limly→∞ �̂
y
tN , i.e., justifies generating more sample paths

as limly→∞ m̂y
tN = my

tN and limly→∞ �̂
y
tN = �

y
tN .

In any case, we can assume exact (approximately exact)
values of m0

ti , m
1
ti , �

0
ti,tj , and �1

ti,tj are available. The opti-
mal discriminant in this case is obtained by using the con-
ventional quadratic discriminant analysis (QDA), which is
now defined by using the following statistic in (11):

ψ
QDA
tN

(
xytN (ωs)

)=−1
2
(
xytN (ωs)−m0

tN
)T

�0 −1
tN

(
xytN (ωs) − m0

tN
)

+ 1
2
(
xytN (ωs) − m1

tN
)
�1−1

tN
(
xytN (ωs)−m1

tN
)

+ 1
2
log

|�1 −1
tN |

|�0 −1
tN | − log

α1
1 − α1

.

(24)
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The use of (24) is justified by the fact that the
BCGP classification reduces to differentiating indepen-
dent observations of Np dimension generated from two
multivariate Gaussian distributions. Therefore, taking the
same set of machinery as in [15] results in (24). We restate
that in this case where (19) holds, there is no need for
utilizing the sample path measurements (training sample
paths) in finding the discriminant (24). This is due to the
fact that the statistical properties of a Gaussian process at
tN are solely determined by my

tN and �
y
tN and, as men-

tioned before, either closed-form solutions of these are
available or they can be approximated element-wise with
an arbitrary small error rate by generating a sufficiently
large number of sample paths.
The optimal solution proposed in (24) is, in fact, a func-

tion of the observation time vector of future sample paths.
Therefore, if a future sample point xytL(ωs) is measured
at an arbitrary time vector tL, which can be partially or
totally different from tN , then the optimal discriminant
ψtL

(
xytL(ωs)

)
is obtained by determining the solution of

SDEs at tL and replacing my
tN and �

y
tN with my

tL and �
y
tL ,

respectively, in (24).

4.2 SDEs as prior information for the dynamics of
class-conditional processes

In practice, the SDEs usually do not provide complete
description and are then viewed as prior knowledge con-
cerning the underlying dynamics of the BCGP model.
Since we assume that a Gaussian process governs both the
dynamics of each class-conditional process (BCGP model
in Section 3) and its corresponding set of SDEs (by using
model (15)), incompleteness of the SDEs results from the
fact that (19) does not necessarily hold. We make the
following assumptions on the nature of the prior infor-
mation to which the set of SDEs corresponding to each
class give rise: (i) before observing the sample paths at
an observation time vector, the SDEs characterize the
only information that we have about the system and (ii)
the statistical properties of all Gaussian processes that
may generate the data are on average (over the parameter
space) equivalent to the statistical properties determined
from the SDEs. The latter statement will subsequently be
formalized.
Assume that the parameters μ

y
tN and �

y
tN defining the

BCGP model constitute a realization of the random vec-
tor θ

y
tN = [

μ
y
tN ,�

y
tN
]
, where θ

y
tN has a prior distribu-

tion π(θ
y
tN ) parameterized by a set

{
m̆y

tN , �̆
y
tN , ν

y
tN , κ

y
tN

}
of

hyperparameters. The quantities ν
y
tN and κ

y
tN define our

certainty about the prior knowledge (here, the set of SDEs
presenting the dynamics of the model). If we take the con-
jugate priors for mean and covariance when the sampling
is Gaussian, i.e., a normal-inverse-Wishart distribution
(which depends on tN ), then

π
(
θ
y
tN
) ∝ |�y

tN |−(κ
y
tN +Np+1)/2exp

(
−1
2
tr
(
�̆

y
tN

(
�

y
tN
)−1

))
×|�y

tN |−1/2exp
(
−ν

y
tN
2

(
μ
y
tN −my

tN
)T (

�
y
tN
)−1(

μ
y
tN −my

tN
))
,

(25)

with μ
y
tN and �

y
tN defined in (6) and (7). Therefore, the

above assumption (ii) on the nature of the prior informa-
tion means that

m̆y
tN = my

tN

�̆
y
tN = (

κ
y
tN − Np − 1

)
�

y
tN ,

(26)

with my
tN defined by (16) and (20) and �

y
tN defined by

(17) and (21). To see (26), note that from (25) and inde-
pendence of μ

y
tN and �

y
tN , we have Eπ

[
μ
y
tN
] = m̆y

tN and

Eπ

[
�

y
tN
] = �̆

y
tN

κ
y
tN −Np−1 (the latter is the mean of an inverse-

Wishart distribution). The more confident we are about
an a priori set of SDEs that is supposed to represent
the underlying stochastic processes at tNy, the larger we
might choose the values of νytN and κ

y
tN and the more con-

centrated become the priors of the mean and covariance
aboutmy

tN and �
y
tN , respectively. To ensure a proper prior

distribution, we assume �̆
y
tN is positive definite, κ

y
tN >

Np − 1, and ν
y
tN > 0 for all tN (cf. p. 126 in [16], p. 178 in

[17], and p. 427 in [3]).
Given the preceding framework for uncertainty in the

BCGP model, the optimal Bayesian classification theory
can be directly adapted. Specifically, the normal-inverse-
Wishart distribution prior as defined in (25) and the inde-
pendence of xytN (ωs) from training sample paths resemble
the same set of conditions as in [6], i.e., having a normal-
inverse-Wishart distribution prior and independence of
future data points from training data points. As a result,
we can follow the same set of machinery to find the effec-
tive class-conditional distributions of the processes (similar
to equation (64) in [6]) and from there obtain the opti-
mal discriminant. Therefore, extending the dimensional-
ity of the problem to Np and using the set of parameters{
m̆y

tN , �̆
y
tN , ν

y
tN , κ

y
tN

}
in the discriminant presented by Eq.

(65) in [6] yields
ψOBC
tN

(
xytN (ωs)

) = K
(
1 + 1

k0
(
xytN (ωs) − m0 ∗

tN
)T

�0 −1
tN

× (
xytN (ωs) − m0 ∗

tN
) )k0+Np

−
(
1 + 1

k1
(
xytN (ωs) − m1 ∗

tN
)T

�1 −1
tN

× (
xytN (ωs) − m1 ∗

tN
) )k1+Np

,

(27)

where
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K =
(

α1
1 − α0

)2 (k0

k1

)Np |�0
tN |

|�1
tN |

(
�(k0/2)�((k1 + pN)/2)
�(k1/2)�((k0 + pN)/2)

)2
,

(28)

with

�
y
tN = ν

y ∗
tN + 1(

κ
y ∗
tN − Np + 1

)
ν
y ∗
tN

�
y ∗
tN ,

�
y ∗
tN =�̆

y
tN+(ny−1)�̂y

tN+ ν
y
tN n

y

ν
y
tN + ny

(
μ̂
y
tN−m̆y

tN
)(
μ̂
y
tN −m̆y

tN
)T ,

ν
y ∗
tN = ν

y
tN + ny, κ

y ∗
tN = κ

y
tN + ny, ky = κ

y ∗
tN − Np + 1,

my ∗
tN = ν

y
tN m̆

y
tN + nyμ̂y

tN
ν
y
tN + ny

,

(29)

where m̆y
tN and �̆

y
tN are determined from (26), and �̂

y
tN

and μ̂
y
tN are the sample mean and sample covariance

matrix obtained by using the sample path training sets S0tN
and S1tN as follows:

μ̂
y
tN = 1

ny
ny∑
i=1

xytN (ωi) ,

�̂
y
tN = 1

ny − 1

ny∑
i=1

(
xytN (ωi)−μ̂

y
tN
) (
xytN (ωi)−μ̂

y
tN
)T .

(30)

As opposed to Section 4.1, where the discriminant can
be applied to any future sample path with an arbitrary
observation time vector, here, the discriminant depends
on both the future and training observation time vectors.
Thus, if the future observation time vector tLy contains
only a set of time points ti where ti ∈ tNy, one may eas-
ily apply the optimal discriminant. This is easily doable
by reducing the dimensionality of the problem by con-
sidering the training sample paths only at tLy, i.e., by
discarding the training sample points at those tNy not in
tLy(denoted by tNy\tLy). However, solving the case where
tLy includes time points not included in tNy is more diffi-
cult and requires further study. In this case, although one
is able to construct the class of prior knowledge for tLy
(i.e., constructing μ

y
tN and �

y
tN ), the paucity of training

sample paths at tLy\tNy does not permit employing (27).

5 Performance analysis
In this section, we analyze the effect of prior knowledge
in the form of stochastic differential equations on the per-
formance of the stochastic discriminant, ψOBC

tN
(
xytN (ωs)

)
,

defined by (27)–(29). As the metric of performance, we
take the true error averaged over the sampling space.
The true error of a discriminant trained on an obser-
vation time vector tN , i.e., ψtN (.), is the probability of
misclassification, which by considering (11) is defined as

εtN=
1∑

y=0
α
y
tN P

(
(−1)yψtN

(
Xy
tN (ωs)

)
>0 |S0tN , S1tN ,Xy

tN (ωs)∈Xy), (31)

where Xy denotes the class-conditional process that gen-
erates the future sample path Xy

tN (ωs) (we assume inde-
pendence of future sample paths from training sample
paths), SytN denotes the set of training sample paths from
class y, and α

y
tN is the mixing probability of the class-

conditional process.
Recall that in this work, we consider a separate sam-

pling scheme. With separate sampling in a classical binary
classification problem where sample points are generated
from two class-conditional densities, there is no sensible
estimate of prior probabilities of classes from the sample
[15]. In that case, either the ratio of the number of sam-
ple points in either class to the total sample size needs to
reflect the corresponding prior probability of the class or
the prior probabilities need to be known a priori; other-
wise, classification rules or error estimation rules suffer
performance degradation [15, 18, 19]. The same argument
applies to this work in which we consider a binary classifi-
cation of sample paths that are generated from two class-
conditional processes under a separate sampling scheme.
In this regard, we assume that the prior probability α

y
tN is

known a priori.
Taking expectation over the sample space, that is over

the mixture of Gaussian processes with the means and
covariance matrices defined by (16), (20), (17), and (21),
yields

E[εtN ]=
1∑

y=0
α
y
tN P

(
(−1)yψtN

(
Xy
tN (ωs)

)
>0 |Xy

tN (ωs) ∈Xy) .
(32)

As benchmarks for evaluating the performance of
ψOBC
tN

(
xytN (ωs)

)
, we compare its performance to (1) the

performance of the stochastic QDA, ψ
QDA
tN

(
xytN (ωs)

)
,

which is defined by (23) and (24), where ly = ny, with ny
indicating the number of available sample paths, and (2)
the performance of a Bayes classifier obtained by plugging
(16), (17), (20), and (21), into (24).

5.1 Synthetic experiments
5.1.1 Experimental set-up
The following steps are used to set up the experiments:

1. To fix the ground-truth model governing the
underlying dynamics of the data, we consider a set of
three-dimensional SDEs (p = 3) defined by (15)
along with the following set of parameters:

A0(t) = A1(t) =[0.01, 0.01, 0.01]T ,

a0(t) = a1(t) =[0, 0, 0]T ,

X0
t0(ω) =[0, 0, 0]T , X1

t0(ω) =[0.25, 0.25, 0.25]T ,

B0(t) = B1(t) = 0.1×
{

σ 2 = 1 diagonal elements
ρ = 0.4 otherwise .

(33)
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The only difference between the SDEs describing X0

and X1 is in the constant initial conditions. Figure 1
presents a single sample path of these two
three-dimensional processes for 0 ≤ t ≤ 100.

2. Use the ground-truth set of SDEs to generate a set of
training sample paths, SytN , of size n

y for class y = 0, 1.
We let n0 = n1 = n, where n ∈, let the length of the
observation time vector be N = 20, and take
[t1, t2, ..., tN ] such that ti − ti−1 = 1, i = 2, . . . , 20.

3. Use the ground-truth set of SDEs to generate a set of
test sample paths, Sy, testtN , of size ny, test = 2, 000 for
class y = 0, 1, where n0, test = n1, test = ntest.

4. Use S0tN ∪ S1tN to train the stochastic QDA,
ψ

QDA
tN

(
xytN (ωs)

)
, which is defined by (23) and (24)

with ly = ny. Apply the trained classifier to the set of
test sample paths, S0, testtN ∪ S1, testtN , to determine the
true error, εQDA

tN , which is defined by replacing
ψtN

(
Xy
tN (ωs)

)
with ψ

QDA
tN

(
Xy
tN (ωs)

)
in (31). This

procedure obtains an accurate estimate of true error.
5. Assume a set of SDEs obtained from prior knowledge

(a priori SDEs). Let this a priori set of SDEs be
presented by replacing Ay(t), By(t), ay(t), and Xy

t0(ω)

in (15) with Ãy(t), B̃y(t), ãy(t), and X̃y
t0(ω),

respectively. To examine the effects of deviations in
the drift vector and dispersion matrix in the a priori
set of SDEs from the ground-truth model introduced
in (33), we assume

• Ã0(t) = A0(t), B̃0(t) = B0(t), X̃0
t0(ω) = X0

t0(ω),
X̃1
t0(ω) = X1

t0(ω), ã0(t) = a0(t), ã1(t) = a1(t).

• To study the effect of shift in the drift vector, we
take Ã1(t) = A1(t)+[�μ,�μ,�μ]T , where
�μ = 0, 0.1, 0.2, 0.3. Here we assume
B̃1(t) = B1(t).

• To study the effect of shift in the dispersion
matrix, we assume the off-diagonal elements of
B̃1(t) are defined by replacing ρ with ρd in (33),
where ρd − ρ = �ρ = 0, 0.03, 0.06, 0.1. Here we
assume Ã1(t) = A1(t).

• The hyperparameters defining our uncertainty
about the specific choice of a priori SDEs (in
fact, about the resultant prior distributions) are
ν0tN = ν1tN = κ0

tN = κ1
tN = Np + κ . The choice of

Np + κ , κ = 20, 50, 100, 500, is made to have
proper prior distributions (see Section 4.2).

6. Generate 2,000 sample paths from the a priori set of
SDEs introduced in Step 5. These sample paths are
used to calculate the hyperparametersmy

tN and �
y
tN

being used in (26) (alternatively, one may solve (16),
(17), (20), and (21) directly and use them in (26)).

7. Usemy
tN and �

y
tN obtained from Step 6 along with

S0tN ∪ S1tN to train ψOBC
tN

(
xytN (ωs)

)
, which is defined

in (27). Apply the trained classifier to the set of test
sample paths, S0, testtN ∪ S1, testtN , to determine the true
error, εOBC

tN , which is defined by replacing
ψtN

(
Xy
tN (ωs)

)
with ψOBC

tN
(
Xy
tN (ωs)

)
in (31).

8. Repeat Steps 2 through 7 a total of T = 1, 000 times
to estimate E

[
ε
QDA
tN

]
and E

[
εOBC
tN

]
.

9. Generate 2,000 sample paths from the ground-truth
set of SDEs introduced in (33). Use these sample
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Fig. 1 A single sample path taken from the two three-dimensional processes described by the set of parameters introduced in (33)
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paths to train the stochastic QDA, ψQDA
tN

(
xytN (ωs)

)
,

which is defined by (23) and ( 24) with ly = 2, 000.
This provides an accurate estimate of the Bayes
(optimal) classifier. Apply this classifier to
S0, testtN ∪ S1, testtN to obtain the Bayes error, which is a
lower bound on the error of any classifier. Note that
in our experiments obtaining the Bayes error is
possible since we have complete knowledge of the
underlying ground-truth models.

5.1.2 Results
Figure 2 shows the effect of a shift in the drift vector
from the ground-truth model via plots of the expected
true error of ψ

QDA
tN (.) and ψOBC

tN (.) as functions of the
size of training sample paths and κ for y = 0, 1, B̃y(t) =
By(t), X̃y

t0(ω) = Xy
t0(ω), Ã0(t) = A0(t), and Ã1(t) =

A1(t)+[�μ,�μ,�μ]T , where �μ = 0, 0.1, 0.2, 0.3. If the

set of a priori SDEs is equivalent or close to the ground-
truth model, e.g., �μ = 0 or �μ = 0.1, then ψOBC

tN (.)
outperforms ψ

QDA
tN (.) for a wide range of training sam-

ple sizes and κ . The more the prior distribution generated
from the set of a priori SDEs is concentrated about the
true underlying parameters of the model and the larger κ ,
the better is the performance achieved by using ψOBC

tN (.).
Figure 3 presents the effect of the discrepancy between

the dispersion matrix of the ground-truth model and that
of the a priori set of SDEs. Again, the closer the prior
knowledge is to the ground-truth model and the larger κ ,
the better is the performance achieved by using ψOBC

tN (.).

5.2 An experiment inspired by a model of the
evolutionary process

In this section, we use a form of an Ornstein-Uhlenbeck
process introduced in [20] for modeling the evolutionary
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Fig. 2 Expected true error, E
[
εQDAtN

]
and E

[
εOBCtN

]
, as a function of number of training sample paths in each class and various choices of �μ and κ .

The dashed line shows the Bayes error
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Fig. 3 Expected true error, E
[
εQDAtN

]
and E

[
εOBCtN

]
, as a function of number of training sample paths in each class and various choices of �ρ and κ .

The dashed line shows the Bayes error

change of species. This model has been recently employed
by [21] to simulate quantitative trait data as a function of
single nucleotide polymorphism (SNP) states. The model
is presented by the following SDE:

dXy
t = −βy [Xy

t − θy
]
dt + σ ydWy

t , Xy
0 = Xy

a, (34)

where Xy
t is the quantitative trait value in a species y, θy is

the primary target value of the trait, Xy
a is the mean state

in an ancestor a, and Wy
t represents Brownian motion.

The parameter βy is the rate of adaptation of species y to
the target value—a low rate of adaptation means very slow
evolution while a large βy practically indicates an instanta-
neous adaptation. The parameter σ y is an indicator of per-
turbation due to random selective factors such as random
mutations and environmental fluctuations [20]. Similar to
[21], we assume the value of the primary target is constant

over the history of the species. Nevertheless, the model in
(34) can be extended to include situations where the pri-
mary target can change over the evolutionary history of
the species (see [20]).
Using the model of (34), we generate the evolutionary

histories of a quantitative trait of two species, 0 and 1,
over a time span of 30 million years with time steps of 1
million years. Similarly to [20, 21], to fix the ground-truth
model that generates the data, we vary values of βy, take
σ y = 1, and assume θ0 = 80 and θ1 = 85. Further-
more, we assume both species have a common ancestor at
the state Xy

a = 1. Figure 4 presents 20 sample paths from
each of these evolutionary processes for the case where
β0 = β1 = β , β = 0.1 (Fig. 4a) and β = 0.15 (Fig. 4b). A
larger β indicates a faster adaptation of species to the tar-
get value. The problem considered here is to use a set of a
priori SDEs in constructing a classifier to differentiate the
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Fig. 4Multiple sample paths taken from the two one-dimensional
evolutionary processes for two values of adaptation rate, (a): β = 0.1;
(b): β = 0.15

evolutionary history of an n-size population of species 0
from an n-size population of species 1, where n ∈[60, 140].
The general protocol for evaluating the performance of

ψOBC
tN (.) is similar to Section 5.1, except for replacing the

ground-truth model (33) with (34) and using the following
the step instead of Step 5:

• Assume a set of SDEs obtained from prior knowledge
(a priori SDEs). Let this a priori set of SDEs be
presented by replacing βy, θy, Xy

a, and σ y by β̃y, θ̃y,
X̃y
a, and σ̃ y, respectively, in (34). To examine the

effect of deviation of the adaptation rate in the a
priori set of SDEs from the ground-truth model, we
let θ̃y = θy, σ̃ y = σ y, X̃y

a = Xy, and β̃0 = β0 and take
β̃1 = β1 + �β .

5.2.1 Results
Figures 5 and 6 (β = 0.1 and β = 0.15, respectively)
show the effect of a deviation from the true rate of adap-
tation to the target value by considering β̃1 = β1 + �β ,
where �β = 0, 0.02, 0.04, 0.06. They provide plots of
the expected true error of ψ

QDA
tN (.) and ψOBC

tN (.) as func-
tions of the size of training sample paths and κ . In both
figures, the closer the prior knowledge is to the ground-
truth evolutionary models, the better is the performance
achieved by using ψOBC

tN (.). The performance deteriorates
and eventually becomes worse than ψ

QDA
tN (.) as the prior

knowledge diverges from the ground-truth model and
the certainty about the prior knowledge increases (a bad
combination when utilizing prior knowledge). In addition,
comparing Figs. 5 and 6 shows that the smaller is the true
value of β and the more destructive is a fixed deviation of
prior knowledge from the true β .

6 Conclusions
This paper provides the first instance in which prior
knowledge in the form of SDEs is used to construct a prior
distribution over an uncertainty class of feature-label dis-
tributions for the purpose of optimal classification. Given
the ubiquity of small samples in biomedicine and other
areas where sample data is expensive, time-consuming,
limited by regulation, or simply unavailable, we have pre-
viously made the point that prior knowledge is the only
avenue available. To achieve the mapping of SDE prior
knowledge into a prior distribution, we have taken advan-
tage of the form and Gaussianity of (12). This mapping is
heavily dependent on the form of the SDEs, and one can
expect widely varyingmappings for different SDE settings.
In general, all parameters used in the a priori set of SDEs

can affect the performance of ψOBC
tN (.). These parame-

ters include every element of the matrices Ãy(t) and B̃y(t)
and all the elements of the vectors ãy(t) and X̃yt0(ω) used
in the SDE’s presentation in (15). For example, in the
experiment of the evolutionary change of species consid-
ered in (34), a deviation from each of the parameters,
namely β̃y, σ̃ y, θ̃y, and X̃y

a, can affect the performance of
ψOBC
tN (.). Although simulation studies can elucidate the

effects of deviation of prior knowledge from the ground-
truth model (as done herein), it would be beneficial to
analytically characterize the performance of ψOBC

tN (.) in
terms of all the hyperparameters; however, this may be
very difficult to accomplish. One possible approach may
be to use an asymptotic Bayesian framework [22] to char-
acterize the performance of ψOBC

tN (.) in terms of sample
size, dimensionality, and hyperparameters.
Recognizing that the construction of robust classifiers

is simply a special case of optimal Bayesian classification
where there are no sample data, so that the “posterior”
is identical to the prior [7], the application of SDEs in
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Fig. 5 Expected true error, E
[
εQDAtN

]
and E

[
εOBCtN

]
, as a function of number of training sample paths in each class and various choices of �β and κ

and for β=0.1. The dashed line shows the Bayes error

this paper is at once applicable to optimal robust clas-
sification in a stochastic setting. Beyond that, one can
consider the more general setting of optimal Bayesian
robust filtering of random processes, where optimization
across an uncertainty class of random processes, ideal
and observed, is relative to process characteristics such as
the auto- and cross-correlation functions [23]. Whereas
in this paper we have considered using SDE prior knowl-
edge to construct prior distributions governing uncer-
tainty classes of feature-label distributions, it seems feasi-
ble to use SDE knowledge to construct prior distributions
governing uncertainty classes of random-process charac-
teristics in the case of optimal filtering. Of course, one
must confront the increased abstraction presented by
canonical representation of random processes [24, 25];
nevertheless, so long as one remains in the framework

of second-order canonical expansions, it should be
doable.

Appendix
Definition of q-dimensional Wiener process
A one-dimensional Wiener process over [0,T] is a Gaus-
sian process W = {Wt : t ≥ 0} satisfying the following
properties:

• For 0 ≤ t1 < t2 < T ,Wt2 − Wt1 is distributed as√
t2 − t1N

(
0, σ 2), where σ > 0 (for the standard

Wiener process, σ = 1).
• For 0 ≤ t1 < t2 < t3 < t4 < T ,Wt4 − Wt3 is

independent ofWt2 − Wt1 .• W0 = 0 with probability 1.
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Fig. 6 Expected true error, E
[
εQDAtN

]
and E

[
εOBCtN

]
, as a function of number of training sample paths in each class and various choices of �β and κ

and for β =0.15. The dashed line shows the Bayes error

• The sample paths of W are almost surely continuous
everywhere.

In general, a q-dimensional Wiener process is defined
using the homogenous Markov process Xt for t ∈[ t0,T].
Let P(t1, x; t2,B) = P(Xt2 ∈ B|Xt1 = x) denote the tran-
sition probabilities of a Markov process Xt for t1 < t2.
For fixed values of t1, x, and t2, P(t1, x; t2, .) is a probability
function (measure) on the σ -algebra B of Borel subsets of
the sample space Rq. Intuitively, P(t1, x; t2,B) is the prob-
ability that the process be in the set B ∈ B at time t2
given it was in state x at time t1. A Markov process is
homogenous with respect to t if its transition probability
P(t1, x; t2,B) is stationary. That is, for t0 < t1 < t2 < T
and t0 < t1 + u < t2 + u < T , it satisfies

P(t1 + u, x; t2 + u,B) = P(t1, x; t2,B). (35)

In this case P(t1, x; t2,B) is commonly denoted by
P(t2 − t1, x;B). A q-dimensional Wiener process is a
q-dimensional homogenous Markov process defined on
[ 0,∞) with stationary transition probability defined by a
multivariate Gaussian distribution as follows:

P(t, x;B) =
∫
B

1
(2π t)d/2 e

− |y−x|2
2t dy. (36)

Therefore, each dimension of a q-dimensional Wiener
process is a one-dimensional Wiener process per se.

Computational complexity
The computational complexity of the algorithm is deter-
mined by the computational cost of solving the set of
SDEs from the Euler-Maruyama scheme (see Section 4.1)
along with the computational cost of evaluating (27). The
computational cost of the Euler-Maruyama scheme per
sample path is inversely proportional to �t [26], where
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�t = T/N , with T and N being defined in Section 3.
Thus, for l = l0 + l1 sample paths, it is O(l/�t). In (27),
the computational cost of evaluating xytN (ωs) − m0 ∗

tN , with
y = 0, 1, breaks down to a computation of m̆y

tN and μ̂
y
tN ,

which are operations with computational costs ofO(lyNp)
and O(nyNp), respectively.
Computation of �

y −1
tN in (27) by Gaussian elimina-

tion is an O
(
max{ny,Np}N2p2

) + O
(
lyN2p2

)
operation

(cf. section 3.7.2 in [27]). This will be further simpli-
fied because, in order to have a positive definite �̆

y
tN , we

assume we generate many sample paths by solving the set
of SDEs such that ly >> Np (see Section 4.1), but since
�

y ∗
tN and �

y −1
tN defined in (29) become positive definite,

we do not need to impose the condition of ny > Np.
Having a realistic assumption on the number of available
sample paths, we can assume ly >> ny, and therefore, the
computation of�y −1

tN becomes anO
(
lyN2p2

)
calculation.

Furthermore, the product of xytN (ωs) − m0 ∗
tN with �

y −1
tN is

an O
(
N2p2

)
calculation. Altogether, by assuming 1/�t <

(Np)2 and k0+k1+Np < (Np)2, the overall computational
cost of ψOBC

tN
(
xytN (ωs)

)
is O

(
max{l0, l1}N2p2

)
.

Using a similar approach, we see that the computational
cost of QDA, which is solely constructed by using n0 + n1
training sample paths from classes 0 and 1 (i.e., no prior
knowledge) is O

(
max{n0, n1}N2p2

)
. We also note that

for computing QDA we need to have min{n0, n1} > Np
because, otherwise, the sample covariance matrices used
in QDA are not invertible.
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