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Abstract

Restricted Boolean networks are simplified Boolean networks that are required for either negative or positive
regulations between genes. Higa et al. (BMC Proc 5:S5, 2011) proposed a three-rule algorithm to infer a restricted
Boolean network from time-series data. However, the algorithm suffers from a major drawback, namely, it is very
sensitive to noise. In this paper, we systematically analyze the regulatory relationships between genes based on the
state switch of the target gene and propose an algorithm with which restricted Boolean networks may be inferred
from time-series data. We compare the proposed algorithm with the three-rule algorithm and the best-fit algorithm
based on both synthetic networks and a well-studied budding yeast cell cycle network. The performance of the
algorithms is evaluated by three distance metrics: the normalized-edge Hamming distance μeham, the normalized
Hamming distance of state transition μstham, and the steady-state distribution distance μssd. Results show that the
proposed algorithm outperforms the others according to both μeham and μstham, whereas its performance according
to μssd is intermediate between best-fit and the three-rule algorithms. Thus, our new algorithm is more appropriate
for inferring interactions between genes from time-series data.
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1 Introduction
A key goal in systems biology is to characterize the mo-
lecular mechanisms governing specific cellular behav-
iors and processes. This entails selecting a model class
for representing the system structure and state dynamics,
followed by the application of computational or statistical
inference procedures to reveal the model structure from
measurement data. The models of gene regulatory net-
works run the gamut from coarse-grained discrete net-
works to the detailed description of stochastic differential
equations [1]. They provide a uniform way to study biological
phenomena (e.g., cell cycle) and diseases (e.g., cancer) and
ultimately lead to systems-based therapeutic strategies [2].
Boolean networks, and the more general class of prob-

abilistic Boolean networks, are one of the most popular
approaches for modeling gene networks. The inference
of gene networks from high-throughput genomic data is
an ill-posed problem. There exists more than one model
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that can explain the data. The search space for potential
regulator sets and their corresponding Boolean functions
generally increases exponentially with the number of genes
in the network and the number of regulatory genes. It is
particularly challenging in the face of small sample sizes,
because the number of genes typically is much greater
than the number of observations. Thus, estimates of
modeling errors, which themselves are determined from
the measurement data, can be highly variable and untrust-
worthy. Many inference algorithms have been proposed to
elucidate the regulatory relationships between genes. Mu-
tual information (MI) is an information-theoretic approach
that can capture the nonlinear dependence between ran-
dom variables. REVEAL is the first information-based
algorithm to infer the regulatory relationships between
genes [3]. However, a small MI does not necessarily mean
that no regulatory relationship exists between genes (false
negative). Conversely, a large MI does not necessarily mean
a real regulatory relationship. ‘False-positive’ relationships
often result from indirect interactions between two genes.
The data processing inequality (DPI) and conditional mu-
tual information (CMI) are two methods used to reduce
the problem of false positives [4,5]. Another information-
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based method is the minimum description length principle
(MDL), which achieves a good trade-off between model
complexity and fit to the data [6–10]. The coefficient of
determination (CoD) selects a set of predictors whose
expression levels can be used to better predict the expres-
sion of a target gene relative to the best possible predic-
tion in the absence of observations [11,12]. The best-fit
extension incorporates inconsistencies generated from
measurements or other unknown latent factors by con-
structing a network that makes as few misclassifications as
possible [13,14]. Any prior knowledge about the network
structure or dynamics likely improves inference accuracy,
especially for small sample sizes. Theoretical consider-
ations and computational studies suggest that gene regula-
tory networks might operate close to a critical phase
transition between ordered and disordered dynamical
regimes [15,16]. Liu et al. proposed a method to embed
such a criticality assumption into the inference proced-
ure. Such regularization of the sensitivity can both im-
prove the inference and move the inferred networks closer
to criticality [17].
A restricted Boolean network is a simplified Boolean

model that has been used to study dynamical behavior
of the yeast cell cycle [18–24]. In this model, the regula-
tory relationship between genes is either upregulation or
downregulation. The output of the target gene is mainly
dominated by the summation of its input genes. When
the input summation is zero, the output state will re-
main as the current state of the target gene. The infer-
ence algorithm mentioned above generally cannot deal
with this situation, and thus may not be appropriate to
infer such network models. Recently, Higa et al. pro-
posed a ‘three-rule algorithm’ to construct a restricted
Boolean network from time-series data [25]. Their idea
is that the consecutive state transitions of the system
must be driven by some constraints, which can be in-
duced from the small perturbations between two similar
system states (detailed rules are provided in Section 3.1).
However, the perturbations in microarry data sometimes
may be caused by stochastic biological randomness or
measurement process instead of real changes in gene ex-
pression level. This makes the three-rule algorithm inev-
itably lead to some incorrect constraints. In this paper,
we propose a systematic method to infer a restricted
Boolean network based on the state transitions of the
target gene. Results of simulated networks and a mod-
eled yeast cell cycle show that the proposed algorithm is
more robust to noise than the three-rule method.
This paper is organized as follows: Background infor-

mation and definitions are given in Section 2. Section 3
presents a brief introduction to the three rules; after
which, we systematically analyze the regulatory relation-
ships between input genes and their target gene and
propose an inference algorithm. Section 4 and Section 5
present results for the simulated networks and for the
cell cycle model of budding yeast. Concluding remarks
are given in Section 6.

2 Background
2.1 Boolean networks
A Boolean network G(V, F) is defined by a set of nodes
V = {x1, …, xn}, xi ∈ {0, 1} and a set of Boolean functions

F = {f1, …, fn} and f i : 0; 1f gki→ 0; 1f g. Each node xi rep-
resents the expression state of gene xi, where xi = 0
means that the gene is off, and xi = 1 means it is on.
Each node xi is assigned a Boolean function f i x1;…; xkið Þ
with ki specific input nodes, which is used to update its
value. Under the synchronous updating scheme, all
genes are updated simultaneously according to their cor-
responding update functions. The network's state at time
t is represented by a binary vector x(t) = (x1(t), …, xn(t)).
In the absence of noise, the state of the system at the
next time step is

x t þ 1ð Þ ¼ F x1 tð Þ;…; xn tð Þð Þ ð1Þ

The long-run behavior of a deterministic Boolean net-
work (BN) depends on the initial state, and the network
will eventually settle down and cycle endlessly through a
set of states called an attractor cycle. The set of all initial
states that reach a particular attractor cycle forms the
basin of attraction (BOA) for the cycle. Following a per-
turbation, the network in the long run may randomly es-
cape an attractor cycle, be reinitialized, and then begin
its transition process anew. For a BN with perturbation
probability p, its corresponding Markov chain possesses
a steady-state distribution. It has been hypothesized that
attractors or steady-state distributions in Boolean formal-
isms correspond to different cell types of an organism or
to cell fates. In other words, the phenotypic traits are
encoded in the attractors [1]. There are two ways to define
the perturbation probability p. One is that each gene can
flip its state according to an i.i.d random perturbation vec-
tor γ = (γ1, ⋯, γn), where γi ∈ {0, 1}, the ith gene flips if
and only γi = 1, and p = P(γi = 1) for i = 1, 2, ⋯, n. The
other is each state x(t) can transit to any other state with
the same probability p. In this situation, at each time step,
state x(t) will transit to the next state according to F with
probability 1 + p − 2n ∗ p and other states with probability
p. In this paper, we adopt the later definition of the per-
turbation probability p.

2.2 Restricted Boolean networks
Restricted Boolean networks are simplified Boolean net-
works in which the regulatory relationships between genes
obey the following convention: aij = 1 represents a positive
regulation from gene xj to xi (activation); aij = − 1 repre-
sents a negative regulation from gene xj to xi (inhibition);
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and aij = 0 means that xj has no effect on xi. The Boolean
function f i x1;…; xkið Þ is defined as [18]

xi t þ 1ð Þ ¼

1; if
X

j∈ 1;…;kif g
aijxi tð Þ > 0

0; if
X

j∈ 1;…;kif g
aijxi tð Þ < 0

xi tð Þ; if
X

j∈ 1;…;kif g
aijxi tð Þ ¼ 0:

8>>>>>><
>>>>>>:

ð2Þ

This model is ‘restricted’ in the sense that functions
satisfying formula (2) constitute a subset of the class of all
Boolean functions. The number of restricted functions de-
creases dramatically as the input degree ki increases. For

example, there are 12 (< 22
2 ¼ 16) restricted functions for

ki = 2, and only 60 functions (<< 22
3 ¼ 256 ) for ki = 3.

The restricted model significantly reduces the model
space, which is beneficial for inference, given a limited
number of noisy high-throughput data.

3 Methods
3.1 Three-rule method
A time-series observation can be treated as a trajectory
(or random walk) of the state space of the network used
to model a real biological system. The three-rule method
proposed by Higa et al. is to induce the constraints between
genes from the small difference between two similar states
and the difference between their next states [25]. Given an
m-point time series S = {S(1), S(2), …, S(m)} of gene expres-
sion profiles, where S(t) ∈ {0, 1}n for t = 1, 2, …, m, the three
rules are as follows:
Rule 1: Let S(t − 1), S(t), and S(t + 1) be three consecu-

tive states. If S(t − 1) and S(t) differ by a single gene xk,
then for each gene xi such that xi(t) ≠ xi(t + 1), we have
xk directly regulates xi; that is, aik ≠ 0.
Rule 2: Only the active genes at time t can possibly

regulate genes at time t + 1.
Rule 3: Given two similar states S(t1) and S(t2), the differ-

ence between S(t1 + 1) and S(t2 + 1) must result from the
genes in their predecessors S(t1) and S(t2) that are expressed
differently.
Figure 1 An example of four genes.
Both rules 1 and 3 can also be extended to situations
where S(t − 1) and S(t) or S(t1) and S(t2) differ in more
than one gene. Cyclically applying these rules to any two
states may lead to a group of constraint inequalities be-
tween variables aij. Many available constraint satisfaction
problem solvers (CSPs) [26] can be used to solve the pos-
sible regulatory relationships of one gene to the target gene.
Rules 1 and 3 may give incorrect relationships if ap-

plied to noisy data; in other words, they are very sensi-
tive to the noise inherent in data. We demonstrate this
by using a small network that contains only four genes
(see Figure 1). An arrow represents positive regulation, a
line segment with a bar at the end represents negative
regulation, and the dotted loop on x2 indicates that this
gene downregulates itself. The time-series data at the
right in Figure 1 are extracted from the network in Figure 1.
Between S(1) and S(2), only x2 changes from 1 to 0, and
only x3 flips from 0 to 1 in the successive states S(2)
and S(3). We can conclude that x2 must inhibit x3 by
applying rule 1, which means a32 = − 1 because turning
off x2 turns on x3. If S(2) becomes 1001 owing to noise,
then we will also have that gene x4 inhibiting x2, which
means a24 = − 1.
3.2 Analysis of regulatory relationships based on
constraints
In this section, we study the regulatory relationships based
on the constraint inequalities in formula (2) and how the
target gene switches from one state to another. The target
gene can switch in one of four ways: 0→ 0, 0→ 1, 1→ 0,
or 0→ 1. Given an input state, inactive genes have no ef-
fect on the target gene, which may help reduce the con-
straint inequalities of the summation ∑ jaijxj(t) (1 ≤ j ≤ ki).
Because the null input provides no constraints be-
tween aij, we only need to investigate the non-null in-
put situations.
First, consider the simplest situation where there is only

one regulatory gene xj1 . If gene xj1 is active and the target
gene xi switches from 0 to 1, then gene xj1 must activate
the target gene xi (which means aij1 ¼ 1). On the contrary,
if the target gene xi switches from 1 to 0, then it must be



Table 2 Regulatory relationships for two input genes

Number xj1 tð Þ xj2 tð Þ xi(t)→ xi(t + 1) aij1 aij2 Constraint

1 0 1 0→ 0 No −1

2 1 0 −1 No

3 1 1 −1 or 1 −1 or 1 aij1 þ aij2≤0

4 0 1 0→ 1 No 1

5 1 0 1 No

6 1 1 1 1

7 0 1 1→ 0 No −1

8 1 0 −1 No

9 1 1 −1 −1

10 0 1 1→ 1 No 1

11 1 0 1 No

12 1 1 −1 or 1 −1 or 1 aij1 þ aij2≥0

No, totally undetermined; −1 or 1, semi-determined.
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inhibited by xj1 (which means aij1 ¼ −1). When the target
gene xi remains in state 1, we have aij1xj1≥0 (which means
aij1 ¼ 1). When the target gene xi remains in state 0, we
have aij1xj1≤0 (which means aij1 ¼ −1 ). We present the
four possible regulatory relationships aij1 in Table 1.
When there are two regulatory genes xj1 and xj2 , we only

consider the input states 01, 10, and 11. If only one input
gene is active, such as xj1xj2 ¼ 01, then we can directly de-
termine aij2 from Table 1, whereas aij1 remains totally non-
determinant because it has no effect on the target gene. If
both gene xj1 and gene xj2 are active, then we need to know
whether or not the target gene xi switches its state. First, if
xi switches from 1 to 0, then we have aij1 ¼ aij2 ¼ −1 to
satisfy the constraint aij1 þ aij2 < 0. Similarly, if xi switches
from 0 to 1, then we have aij1 ¼ aij2 ¼ 1 to satisfy the con-
straint aij1 þ aij2 > 0. Second, if xi remains in state 0, then
we have aij1 ¼ aij2 ¼ −1 or aij1 ¼ −aij2 because aij1 þ aij2≤0.
Similarly, if xi remains in state 1, then we have aij1 ¼ aij2 ¼ 1

or aij1 ¼ −aij2 because aij1 þ aij2≤0 . We call these later
cases ‘semi-determined’ because there are two possible
combinations of aij1 and aij2 in each case. In Table 2, we
present the 12 possible regulatory relationships of aij1 and
aij2 for two input genes.
Analogously, the regulatory relationships for three input

genes are shown in Table 3. There are 10 semi-determined
cases, and most of them occur when the target gene xi
does not change. Some of the semi-determined cases in
Tables 2 and 3 may become determined if some aij are
determined. For example, given aij1 þ aij2≤0 for (3) in
Table 2, we can determine aij2 ¼ 1 if aij1 is determined
to be 1. However, aij1 still remains semi-determined (either
1 or −1) if aij1 is determined to be −1. As the number of regu-
latory genes increases, the proportion of semi-determined
cases increases significantly. We will not extend the above
analysis to situations of more than three input genes.
In most reference studies, the limit ki ≤ 3 is generally
respected to mitigate model complexity, particularly
for small sample sizes.
Given a target gene xi and its predictor genes xj (1 ≤ j ≤ ki),

we may determine the value of aij at each time point t
(1 ≤ t ≤m − 1) by searching Tables 1, 2, or 3 across the
whole time series S = {S(1), S(2), …, S(m)}. Let N−1

ij , N
1
ij ,

and N−1;1
ij denote the number of aij=− 1, aij= 1, and aij=− 1
Table 1 Regulatory relationships for one input gene

Number xj1 tð Þ xi(t)→ xi(t + 1) aij1
1 1 0→ 0 −1

2 1 0→ 1 1

3 1 1→ 0 −1

4 1 1→ 1 1
or 1, respectively. The degree of determination of a regula-
tory relationship aij is defined as

dij ¼ N−1
ij −N

1
ij

���
���: ð3Þ

If N−1
ij > N1

ij , then aij is likely to be −1; otherwise, it is
likely to be 1. The larger the value of dij, the greater the
determination of aij. In order to reduce the semi-
determined cases, we first find the one with the largest
determination, say, aij,, and determine its value by the
majority rule. Then, we apply the value of aij to those
inequalities including it to solve other semi-determined
aip (p ≠ j, 1 ≤ p, j ≤ ki). By repeating this process, we can
reduce the number of semi-determined cases and deter-
mine the values of other aip accordingly.

3.3 Error analysis
Given a predictor set for gene xi, the basic inconsistency
is the discrepancy in the determination of aij, and we de-
fine the error resulting from such an inconsistency by

ε−1;1
ij

¼ min N−1
ij ;N

1
ij

� �
. A second kind of inconsistency

arises from the null input. Specifically, the target gene xi
cannot flip its state under null input situations. More-
over, if it is negatively self-regulated (self-degradation), it
cannot be active when its input genes are null. The
number of such inconsistencies defines the error εnull

i
,

which is listed in Table 4 for self-degradation and no
self-degradation, respectively. The total error of a pre-

dictor set is defined by ε ¼ εnull
i

þ
X
j

ε−1;1
ij

. Generally,

a consistent predicator set should have the minimal
error and the minimal number of regulatory genes
simultaneously.



Table 3 Regulatory relationships for three input genes

Number xj1 tð Þ xj2 tð Þ xj3 tð Þ xi(t)→ xi(t + 1) aij1 aij2 aij3 Constraint

1 0 0 1 0→ 0 No No −1

2 0 1 0 No −1 No

3 1 0 0 −1 No No

4 0 1 1 No −1 or 1 −1 or 1 aij2 þ aij3≤0

5 1 0 1 −1 or 1 No −1 or 1 aij1 þ aij3≤0

6 1 1 0 −1 or 1 −1 or 1 No aij1 þ aij2≤0

7 1 1 1 −1 or 1 −1 or 1 −1 or 1 aij1 þ aij2 þ aij3 < 0

8 0 0 1 0→ 1 No No 1

9 0 1 0 No 1 No

10 1 0 0 1 No No

11 0 1 1 No 1 1

12 1 0 1 1 No 1

13 1 1 0 1 1 No

14 1 1 1 −1 or 1 −1 or 1 −1 or 1 aij1 þ aij2 þ aij3 > 0

15 0 0 1 1→ 0 No No −1

16 0 1 0 No −1 No

17 1 0 0 −1 No No

18 0 1 1 No −1 −1

19 1 0 1 −1 No −1

20 1 1 0 −1 −1 No

21 1 1 1 −1 or 1 −1 or 1 −1 or 1 aij1 þ aij2 þ aij3 < 0

22 0 0 1 1→ 1 No No 1

23 0 1 0 No 1 No

24 1 0 0 1 No No

25 0 1 1 No −1 or 1 −1 or 1 aij2 þ aij3≥0

26 1 0 1 −1 or 1 No −1 or 1 aij1 þ aij3≥0

27 1 1 0 −1 or 1 −1 or 1 No aij1 þ aij2≥0

28 1 1 1 −1 or 1 −1 or 1 −1 or 1 aij1 þ aij2 þ aij3 > 0

No, totally undetermined; −1 or 1, semi-determined.
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3.4 A small example
We now apply the above analysis to infer the predicator
set for gene x3 in Figure 1. Based on Tables 1,2,3,4, the
results for all possible one- and two-input genes at each
time point are presented in Tables 5,6,7,8, respectively.
In those six possible predictor sets, the minimal error is
Table 4 Errors in the null-input situations
Number xj1 tð Þ¼⋯¼xjki tð Þ xi(t)→ xi(t + 1) εnulli

Self-
degradation
regulated

No self-
degradation

1 0 0→ 0 0 0

2 0 0→ 1 1 1

3 0 1→ 0 0 1

4 0 1→ 1 1 0
achieved by x1 and x2, which are just the regulatory
genes of x3.

3.5 Inference algorithm
Given a time series S = {S(1), S(2), …, S(m)}, the minimal
error predictor sets may not be unique. Each of them
can be viewed as fitting the target gene in a different
way. We employ the heuristic that if one gene occurs
Table 5 Regulatory relationships a3j for one input x1
(or x2 or x4) at each time step

t x1(t) x2(t) x4(t) x3(t)→ x3(t + 1) a31 εnull3 a32 εnull3 a34 εnull3

1 1 1 0 0→ 0 −1 0 −1 0 0

2 1 0 0 0→ 1 1 0 1 1

3 1 0 0 1→ 1 1 0 0 1

4 1 0 1 1→ 1 1 0 0 1 0



Table 9 Average number of true-positive and false-positive
connections for three algorithms

K Noise
(%)

Algorithm m = 10 m = 20 m = 30 m = 40

TP FP TP FP TP FP TP FP

3 0 Three-rule 6.2 0 8.7 0.6 11.3 1.6 13.3 3.0

New 8.7 3.1 10.5 3.1 11.8 3.3 12.5 3.3

Best-fit 8.1 4.6 10.2 5.4 12.2 6.4 13.3 7.0

5 Three-rule 2.6 2.7 7.3 11.5 10.6 20.7 12.5 30.3

New 7.0 7.5 8.7 6.9 10.1 6.3 10.7 6.3

Best-fit 7.1 11.1 9.2 15.1 10.8 15.7 11.6 15.9

10 Three-rule 1.8 3.6 6.5 17.6 10.5 31.6 12.4 39.8

New 5.5 10.0 6.9 9.5 8.1 9.2 8.4 9.1

Best-fit 6.0 15.2 8.1 19.1 9.2 19.3 9.9 19.0

5 0 Three-rule 6.7 0.1 8.9 0.6 11.0 1.3 12.6 2.3

New 8.3 2.7 9.9 3.0 10.9 3.4 11.4 3.9

Table 8 Regulatory relationships a3j for two inputs x2 and
x4 at each time step

t x2(t) x4(t) x3(t)→ x3(t + 1) a32 a34 Constraint εnull3

1 1 0 0→ 0 −1 No 0

2 0 0 0→ 1 1

3 0 0 1→ 1 0

4 0 1 1→ 1 No 1 0

Table 6 Regulatory relationships a3j for two inputs x1 and
x2 at each time step

t x1(t) x2(t) x3(t)→ x3(t + 1) a31 a32 Constraint εnull3

1 1 1 0→ 0 −1,1 −1,1 a31 + a32≤ 0 0

2 1 0 0→ 1 1 No 0

3 1 0 1→ 1 1 No 0

4 1 0 1→ 1 1 No 0

The italicized value is solved from the determination a31 = 1.
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frequently in those sets, then it is highly probably to be
a true regulatory gene. Combining them may give a
more reliable prediction and can also help alleviate the
constraint of using at most three input genes for a target
gene. Given a target gene xi, we propose the following
algorithm to infer its regulatory gene set:

1. Calculate the total error of each combination of one,
two, or three regulatory gene sets P(xi).

2. Sort the predictor sets in ascending order of their
errors.

3. If a gene appears in the first l sets with a frequency
greater than or equal to 50%, then it is selected as a
regulatory gene.

4 Implementation
As mentioned in the introduction, many algorithms have
been proposed to infer gene regulatory networks. A recent
study shows that the best-fit algorithm appears to give the
best results for the recovery of regulatory relationships
among REVEAL, BIC, MDL, uMDL, and Best-Fit [27]. In
this paper, we compare the performance of the three-rule
algorithm, the best-fit algorithm and the proposed algo-
rithm based on both synthetic networks as well as on a
well-studied budding yeast cell cycle network.
We have implemented the three-rule algorithm and our

proposed algorithm based on the PBN Toolbox (http://
code.google.com/p/pbn-matlab-toolbox/), which includes
the implementation of best-fit algorithm and the calcula-
tion of the steady state distribution and other intervention
modules for Boolean networks. Genetic regulatory net-
works are commonly believed to have sparse connectivity
topology. To evaluate the inference algorithms based on
simulated time series of network states, we have restricted
the random BNs to resemble this property of biological
Table 7 Regulatory relationships a3j for two inputs x1 and
x4 at each time step

t x1(t) x4(t) x3(t)→ x3(t + 1) a31 a34 Constraint εnull3

1 1 0 0→ 0 −1 No 0

2 1 0 0→ 1 1 No 0

3 1 0 1→ 1 1 No 0

4 1 1 1→ 1 −1,1 −1,1 a31 + a34≥ 0 0
networks. Specifically, we have generated random BNs
with a scale-free topology, and each gene has at most
five predictors: ¼ maxni¼1ki≤5. We uniformly assign each
gene 1 to K regulators that upregulate (1) or downregulate
(−1) it. The average connectivity of random networks is
(1 +K)/2.
In order to compare the performance of the three al-

gorithms with the ground-truth network, we use the
following three distances [28,29]:

(1) The normalized-edge Hamming distance,

μeham ¼ FNþ FP
P þ N

;

where FN and FP represent the number of false-negative
and false-positive wires, respectively. P and N represent the
total number of positive and negative wires, respectively.
Best-fit 8.2 4.6 10.1 5.4 11.8 6.4 12.7 6.9

5 Three-rule 3.0 3.2 7.86 11.8 10.7 20.5 12.8 28.6

New 6.7 7.6 8.4 7.0 9.3 6.7 9.8 6.3

Best-fit 7.1 11.5 9.2 15.4 10.4 15.7 11.1 16.1

10 Three-rule 2.7 2.8 6.9 16.5 10.6 31.6 12.4 39.4

New 5.3 9.9 7.0 9.5 7.5 9.3 8.1 9.1

Best-fit 7.2 11.5 8.2 18.9 9.0 19.3 9.4 19.4

http://code.google.com/p/pbn-matlab-toolbox/
http://code.google.com/p/pbn-matlab-toolbox/
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This Hamming distance reflects the accuracy of the recov-
ered regulatory relationships.
(2) The normalized Hamming distance of state transitions,

μstham ¼ 1
n�2n

Xn
i¼1

X2n

k¼1

f i xkð Þ⊕ f
0
i xkð Þ�;

h

where fi(•) and f
0
i •ð Þ represent the Boolean function of

gene i in the ground-truth network and the inferred net-
work, respectively; xk represents a binary state vector,
and⊕ denotes modulo-2 addition. This Hamming dis-
tance indicates the accuracy of the inferred network for
predicting the next state of the ground-truth network.
(3)The steady-state distribution distance,

μssd ¼
X2n

k¼1

πk−π
0
k

�� ��;

where πk and π
0
k are the steady-state distribution of state

xk in the ground-truth network and the inferred network,
respectively. The steady-state distribution distance reflects
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Figure 2 Comparison of μeham, μ
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ham, μ

ssd for the three algorithms with
the degree of an inferred network approaching the long-
run behavior of the ground-truth network.

5 Results and discussion
5.1 Simulated results
Owing to the computational complexity and the network
state space, which increases exponentially with the num-
ber of genes or the network size, all our simulations are
based on networks with n = 10 genes. We generate 300
random Boolean networks respectively with maximal in-
put degree K = 3 and K = 5. For each simulated network,
we generate about 4 time series so that the total time
points add up to 40. Given a specific sample data, the
noise is added by flipping the value of each bit with
probability 0.05 and 0.10, respectively. The steady-state
distribution is calculated by a perturbation parameter
p = 0. 0001. For the proposed algorithm, we selected
the first l = 10 minimal error predictor sets. For best fit,
we selected the minimal error predictor sets from k = 1, 2,
3. In Table 9, we list the average number of true-positive
and false-positive connections for K = 3 and K = 5 in dif-
ferent noise intensities.
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Figure 2 shows the performance of three algorithms
on networks with K = 3 under different noise intensities
according to three distance metrics: the normalized-edge
Hamming distance μeham, the normalized Hamming distance
of state transition μstham , and the steady-state distribution
distance μssd. The performance of the three-rule algorithm
and the proposed algorithm is very close when there is no
noise. However, it differs dramatically in noisy data. Spe-
cifically, the performance of the proposed algorithm in-
creases as the sample size increases while that of the
three-rule algorithm decreases. The main reason lies in
the fact that the proposed algorithm infers the regulatory
relation based on the entire time series instead of on a
small perturbation between two time points, which makes
it more robust against noise than the three-rule algorithm.
Given a specific noise intensity η, with more samples,
there are more noisy perturbed bits; so, more incorrect
connections will be inferred by the three-rule algorithm.
Table 9 shows that the number of the false positives of the
three-rule algorithm increases more quickly than that
of the true positives as the sample size increases. This is
the main factor which makes its performance deteriorate
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Figure 3 Comparison of μeham, μ
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ssd for the three algorithms with
even though the sample size increases. Consequently, the
three-rule algorithm is very sensitive to noise in the data,
and increasing sample size makes no improvement in its
performance.
Compared with the best-fit algorithm, the proposed al-

gorithm performs better with respect to μeham and μstham .
In a restricted Boolean network model, the output of

states with
X
j

aijxi tð Þ ¼ 0 is determined by the current

state of the target gene xi. This means that given the
same input state, xi may be 1 at one time and be 0 at an-
other time. The best-fit algorithm does not allow such
situation, and it will treat such a case in the data as an
error. If the target gene xi has three regulators and one
downregulates it, then there will be 3 such states out of
the 8 possible input states. The influence of such cases
on the performance of best-fit algorithm can not be
neglected. Additionally, the best-fit algorithm cannot
deal with the inconsistency listed in Figure 3. These two
factors hurt its performances as compared to the pro-
posed algorithm on μeham and μstham . Table 9 shows that
the number of the true positives of both algorithms is
30 40
ise=0.05)

10 20 30 40
0.2

0.3

0.4

0.5

m(Noise=0.1)

30 40
ise=0.05)

10 20 30 40
0.2

0.3

0.4

m(Noise=0.1)

30 40
ise=0.05)

10 20 30 40
1.5

1.6

1.7

1.8

m(Noise=0.1)

Three−rule

Best−Fit

New Algorithm

Three−rule

Best−Fit

New Algorithm

Three−rule

Best−Fit

New Algorithm

Three−rule

Best−Fit

New Algorithm

Three−rule

Best−Fit

New Algorithm

Three−rule

Best−Fit

New Algorithm

0%, 5%, and 10% noises (K = 5).



Ouyang et al. EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:10 Page 9 of 12
http://bsb.eurasipjournals.com/content/2014/1/10
almost the same, but the number of false positives of
the best-fit algorithm is larger than that of the pro-
posed algorithm.
Concerning the steady state distribution distance μssd,

the proposed algorithm performs not so well as the best-fit
algorithm. However, their difference decreases as the noise
intensity increases. As pointed in [27], the inferred net-
works with relative more connections can explain the ob-
served data better with respect to steady-state distribution
distance μssd, even though some are incorrect connections.
Because the best-fit algorithm infers more connection than
the proposed algorithm (see Table 9), it performs better
on μssd than the latter. On the other hand, the proposed
Cell Size
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Figure 4 The original and inferred cell cycle networks of budding yea
(C) Network inferred by the best-fit algorithm. (D) Network inferred by the pr
‘T’ lines are negative regulation; and ‘T loops are self-degradation. In (B),
relationships, and the light dashed lines denote the incorrectly inferred r
algorithm is more robust than the best-fit algorithm as it
combines those minimal error sets to determine the regu-
latory gene instead of selecting one. When noise intensity
increases, the performance of the best-fit algorithm will
drop more quickly than that of the proposed algorithm,
which leads to their performance on μssd converges.
Figure 4 shows the performance of three algorithms

on networks with K = 5, which are analogous to the trends
observed in Figure 2. The only difference is that the per-
formance of the three algorithms decreases because the
networks' complexity makes them hard to infer. In sum-
mary, the proposed algorithm performs better than the
three-rule algorithm on the three distance metrics in noisy
Cln3
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Cln1
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D
st. (A) Original network. (B) Network inferred by three-rule method.
oposed algorithm. In (A), (B), and (D), arrows denote positive regulation;
(C), and (D), bold solid lines denote the correct inferred regulatory
egulatory relationships.



Table 10 Temporal evolution of state for cell cycle

Time Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1 Phase

1 1 0 0 0 1 0 0 0 1 0 0 Start

2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 0 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S

6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M

8 0 0 0 0 0 1 1 0 0 1 1 M

9 0 0 0 0 0 1 1 0 1 1 1 M

10 0 0 0 0 0 1 1 0 1 0 1 M

11 0 0 0 0 1 1 1 0 1 0 0 M

12 0 0 0 0 1 1 0 0 1 0 0 M

13 0 0 0 0 1 0 0 0 1 0 0 G1

Ouyang et al. EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:10 Page 10 of 12
http://bsb.eurasipjournals.com/content/2014/1/10
situations, whereas it performs less well than the best-fit
algorithm on the steady-state distribution distance. This
suggests that it is more feasible to infer the structure of re-
stricted Boolean network model than the three-rule algo-
rithm and best-fit algorithm.

5.2 Cell cycle model of budding yeast
The cell cycle is a vital biological process in which one
cell grows and divides into two daughter cells. It consists
of four phases, G1, S, G2, and M, and is regulated by a
highly complex network that is highly conserved among
the eukaryotes. From the 800 genes involved in the
cell cycle process of budding yeast, Li et al. con-
structed a network of 11 key regulators: Cln3, MBF,
SBF, Cln1, Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb1, and
Mcm1 [18]. This restricted Boolean network model
(shown in Figure 4A) has an attractor whose biggest
basin corresponds to the biological G1 stationary state.
The temporal sequence in Table 10 is a pathway from this
basin, which follows the biological trajectory of the cell
cycle network.
We have applied the three algorithms to the above

artificial time-series data and show the inferred networks
in Figure 4. In the simplified model of the budding yeast
cell cycle, there are a total of 34 regulatory relationships
Table 11 The performance of the three algorithms for the yea

Noise

0% 5%

Distance

μeham μstham μssd μeham
Three-rule 0.198 0.313 1.394 0.27

New algorithm 0.19 0.250 1.372 0.252

Best-fit 0.198 0.229 1.245 0.298
(or connections). The three-rule algorithm inferred 10
relationships, all correct (see Figure 4B). The best-fit al-
gorithm inferred 15 correct and 5 incorrect relationships
(see Figure 4C). The proposed algorithm inferred 15 cor-
rect and 4 incorrect relationships (see Figure 4D). Both
best-fit and the proposed algorithms inferred more true
regulatory relationships than the three-rule algorithm
with some incorrect connections. For studying regula-
tory relationships, this may be more advantageous be-
cause more potential regulatory relationships are made
available for biologists to check in the wet lab.
We also ran 100 simulations with 5% and 10% noises

for this pathway. Even for the same pathway data, the re-
sult of each noisy pathway data differs dramatically. This
is not surprising because noise significantly influences
the determination of regulatory relations for all algo-
rithms. The performance of the three algorithms on
μeham , μ

st
ham , and μssd is listed Table 11. The relative per-

formance of the three algorithms for this pathway data
is also consistent with the previous simulation results.
5.3 Computational issues
When inferring real networks with moderate size, the
time complexity of algorithms is a key issue. Almost all
st-pathway data

10%

μstham μssd μeham μstham μssd

0.378 1.454 0.29 0.402 1.472

0.304 1.386 0.292 0.334 1.438

0.341 1.263 0.365 0.403 1.298



Table 12 Algorithm timings (seconds)

n N = 20 N = 40 SSD

Three-rule Best-fit Proposed Three-rule Best-fit Proposed

11 1.04 0.09 1.11 2.7 0.14 1.67 25

12 2.5 0.11 2.63 4.1 0.18 2.15 160

13 6.3 0.15 3.55 7.5 0.23 4.11 1,500
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algorithms proposed to date possess exponential complex-
ity. The time complexity of the proposed algorithm and
best-fit algorithm is n⋅Ck

n⋅m
� �

. The most time-consuming
process for the three-rule algorithm is to solve the con-
straint inequalities, and its time complexity is O(n ⋅ cn ⋅ m2)
(1 < c < 2). From this point of view, the three-rule algorithm
is more time consuming than the other two.
The proposed algorithm is similar in workflow to the

best-fit algorithm; however, additional computation time
results from three factors: (1) determination of the pos-
sible regulatory relationships, (2) determination during
error estimation if an output state is correct for a given
model according to Equation (2), and (3) combination of
the first ten least-error models in the last step.
In practice, however, algorithm complexity is not the

limiting factor. As shown in Table 12, for 11, 12, and 13
genes, and for N = 20 and N = 40, the proposed algorithm's
computation time is between the best-fit and the three-
rule algorithms, but the overriding computational issue is
computation of the steady-state distribution, which is often
required for application. It is for this reason that interest
has focused on reducing network complexity [29–31].
6 Conclusion
The model space of Boolean networks is huge and from
the point of view of evolution, it is unimaginable for na-
ture to select its operational mechanisms from such a
large space. Restricted Boolean networks, as a simplified
model, have recently been extensively used to study the
dynamical behavior of the yeast cell cycle process. In this
paper, we propose a systematic method to infer the re-
stricted Boolean network from time-series data. We com-
pare the performance of the three-rule, best-fit, and the
proposed algorithms both on simulated networks and on
an artificial model of budding yeast. Results show that our
algorithm performs better than the three-rule and best-fit
algorithms according to the distance metrics μeham and
μstham, but slightly less well than the best-fit algorithm ac-
cording to μssd. This result indicates that the proposed
algorithm may be more appropriate for recovering regu-
latory relationships between genes under the restricted
Boolean network model.
The main advantage of the proposed algorithm is that

it is more robust to noise than both the three-rule algo-
rithm and best-fit algorithm. The proposed algorithm
infers the regulatory relationships according to the con-
secutive state transitions of the target gene, instead of
the small perturbations between two similar states in
the three-rule algorithm. Simulation results show that
noise in the data may induce many incorrect constraints
by the three-rule algorithm. This hinders its application
to noisy samples. Moreover, the proposed algorithm can
capture the intrinsic state transition defined in Equation 2,
whereas the best-fit algorithm cannot. Hence, because
the inference processes of both algorithms try to find
the minimal-error predictor set, the proposed algorithm
can distinguish error in the data more accurately than
the best-fit algorithm. Additionally, combination of the
minimal error predictor sets in the proposed algorithm
also improves its robustness.
In the Boolean formalism, a single time series (or trajec-

tory) can be treated as a random walk across state space.
It is not possible to recover the complex biological system
from just one short trajectory by any method. Using het-
erogeneous data and some a priori knowledge is typically
a necessity. A priori knowledge can be incorporated into
the proposed algorithm and helps by reducing the search
space. For instance, an algorithm might assume a pre-
scribed attractor structure [32]. In our case, if we know
that x regulates y, then we only consider those combina-
tions containing x, thereby reducing the search space.
Additionally, different methods may focus on different as-
pects of the inference process. For example, the best-fit al-
gorithm and CoD are mainly concerned with the fitness of
the data, whereas MDL-based methods intend to reduce
structural risks. Future work will involve combining MDL
with the proposed algorithm to reduce the rate of false
positives.
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