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Abstract

Recent experimental imaging techniques are able to tag and count molecular populations in a living cell. From these
data mathematical models are inferred and calibrated. If small populations are present, discrete-state stochastic
models are widely-used to describe the discreteness and randomness of molecular interactions. Based on time-series
data of the molecular populations, the corresponding stochastic reaction rate constants can be estimated. This
procedure is computationally very challenging, since the underlying stochastic process has to be solved for different
parameters in order to obtain optimal estimates. Here, we focus on the maximum likelihood method and estimate
rate constants, initial populations and parameters representing measurement errors.

Introduction
During the last decade stochastic models of networks
of chemical reactions have become very popular. The
reason is that the assumption that chemical concentra-
tions change deterministically and continuously in time is
not always appropriate for cellular processes. In particu-
lar, if certain substances in the cell are present in small
concentrations the resulting stochastic effects cannot be
adequately described by deterministic models. In that
case, discrete-state stochastic models are advantageous
because they take into account the discrete random nature
of chemical reactions. The theory of stochastic chemi-
cal kinetics provides a rigorously justified framework for
the description of chemical reactions where the effects
of molecular noise are taken into account [1]. It is based
on discrete-state Markov processes that explicitly repre-
sent the reactions as state-transitions between population
vectors. When the molecule numbers are large, the solu-
tion of the deterministic description of a reaction network
and themean of the corresponding stochastic model agree
up to a small approximation error. If, however, species
with small populations are involved, then only a stochastic
description can provide probabilities of events of inter-
est such as probabilities of switching between different
expression states in gene regulatory networks or the dis-
tribution of gene expression products. Moreover, even the
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mean behavior of the stochastic model can largely devi-
ate from the behavior of the deterministic model [2]. In
such cases the parameters of the stochastic model rather
then the parameters of the deterministic model have to be
estimated [3-5].
Here, we consider noisy time series measurements of

the system state as they are available from wet-lab exper-
iments. Recent experimental imaging techniques such
as high-resolution fluorescence microscopy can measure
small molecule counts with measurement errors of less
than one molecule [6]. We assume that the structure of
the underlying reaction network is known but the stochas-
tic reaction rate constants of the network are unknown
parameters. Then we identify rate constants that maxi-
mize the likelihood of the time series data. Maximum like-
lihood estimators are the most popular estimators since
they have desirable mathematical properties. Specifically,
they become minimum variance unbiased estimators and
are asymptotically normal as the sample size increases.
Our main contribution consists in devising an efficient

algorithm for the numerical approximation of the likeli-
hood and its derivatives w.r.t. the stochastic reaction rate
constants. Furthermore, we show how similar techniques
can be used to estimate the initial molecule numbers
of a network as well as parameters related to the mea-
surement error. We also present extensive experimental
results that give insights about the identifiability of cer-
tain parameters. In particular, we consider a simple gene
expression model and the identifiability of reaction rate
constants w.r.t. varying observation interval lengths and
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varying numbers of time series. Moreover, for this system
we investigate the identifiability of reaction rate constants
if the state of the gene cannot be observed but only
the number of mRNA molecules. For a more complex
gene regulatory network, we present parameter estima-
tion results where different combinations of proteins are
observed. In this way we reason about the sensitivity of the
estimation of certain parameters w.r.t. the protein types
that are observed.
Previous parameter estimation techniques for stochas-

tic models are based on Monte-Carlo sampling [3,5]
because the discrete state space of the underlying model
is typically infinite in several dimensions and a priori
a reasonable truncation of the state space is not avail-
able. Other approaches are based on Bayesian inference
which can be applied both to deterministic and stochastic
models [7-9]. In particular, approximate Bayesian infer-
ence can serve as a way to distinguish among a set
of competing models [10]. Moreover, in the context of
Bayesian inference linear noise approximations have been
used to overcome the problem of large discrete state
spaces [11].
Our method is not based on sampling but directly

calculates the likelihood using a dynamic truncation of
the state space. More precisely, we first show that the
computation of the likelihood is equivalent to the evalu-
ation of a product of vectors and matrices. This product
includes the transition probability matrix of the associated
continuous-time Markov process, i.e., the solution of the
Kolmogorov differential equations (KDEs), which can be
seen as a matrix-version of the chemical master equation
(CME). Solving the KDEs is infeasible because of the state
space of the underlyingMarkovmodel is very large or even
infinite. Therefore we propose an iterative approximation
algorithm during which the state space is truncated in an
on-the-fly fashion, that is, during a certain time interval
we consider only those states that significantly contribute
to the likelihood. This technique is based on ideas pre-
sented in [12], but here we additionally explain how the
initial molecule numbers can be estimated and how an
approximation of the standard deviation of the estimated
parameters can be derived. Moreover, we provide more
complex case studies and run extensive numerical exper-
iments to assess the identifiability of certain parameters.
In these experiments we assume that not all molecular
populations can be observed and estimate parameters for
different observation scenarios, i.e., we assume different
numbers of observed cells and different observation inter-
val lengths. We remark that this article is an extension of
a previously published extended abstract [13].
The article is further organized as follows: After

introducing the stochastic model in Section“Discrete-
state stochastic model”, we discuss the maximum like-
lihood method in Section “Parameter inference” and

present our approximation method in Section “Numerical
approximation algorithm”. Finally, we report on exper-
imental results for two reaction networks in Section
“Numerical results”.

Discrete-state stochastic model
According to Gillespie’s theory of stochastic chemical
kinetics, a well-stirred mixture of nmolecular species in a
volume with fixed size and fixed temperature can be rep-
resented as a continuous-time Markov chain {X(t), t ≥ 0}
[1]. The random vector X(t) = (X1(t), . . . ,Xn(t))
describes the chemical populations at time t, i.e., Xi(t) is
the number of molecules of type i ∈ {1, . . . , n} at time
t. Thus, the state space of X is Z

n+ = {0, 1, . . .}n. The
state changes of X are triggered by the occurrences of
chemical reactions, which are of m different types. For
j ∈ {1, . . . ,m} let vj ∈ Z

n be the nonzero change vector of
the j-th reaction type. Thus, if X(t) = x and the j-th reac-
tion is possible in x, then X(t + dt) = x+ vj is the state of
the system after the occurrence of the j-th reaction within
the infinitesimal time interval [ t, t + dt).
Each reaction type has an associated propensity func-

tion, denoted by α1, . . . ,αm, which is such that αj(x) · dt
is the probability that, given X(t) = x, one instance of
the j-th reaction occurs within [ t, t + dt). The value αj(x)
is proportional to the number of distinct reactant com-
binations in state x and to the reaction rate constant cj.
The probability that a randomly selected pair of reactants
collides and undergoes the j-th chemical reaction within
[ t, t + dt) is then given by cjdt. The value cj depends on
the volume and the temperature of the system as well as
on the microphysical properties of the reactant species.

Example 1. We consider the simple gene expression
model described in [4] that involves three chemical
species, namely DNAON, DNAOFF, and mRNA, which
are represented by the random variables X1(t), X2(t),
and X3(t), respectively. The three possible reactions
are DNAON → DNAOFF, DNAOFF → DNAON, and
DNAON → DNAON + mRNA. Thus, v1 = (−1, 1, 0), v2 =
(1,−1, 0), v3 = (0, 0, 1). For a state x = (x1, x2, x3), the
propensity functions are α1(x) = c1 ·x1, α2(x) = c2 ·x2, and
α3(x) = c3 ·x1. Note that given the initial state x = (1, 0, 0),
at any time, either the DNA is active or not, i.e. x1 = 0 and
x2 = 1, or x1 = 1 and x2 = 0. Moreover, the state space of
the model is infinite in the third dimension. For a fixed time
instant t > 0, no upper bound on the number of mRNA
is known a priori. All states x with x3 ∈ Z+ have positive
probability if t > 0 but these probabilities will tend to zero
as x3 → ∞.

The CME
For a state x ∈ Z

n+ and t ≥ 0, let p(x, t) denote the proba-
bility Pr(X(t) = x), i.e., the probability that the process is
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in state x at time t. Furthermore, let p(t) be the row vector
with entries p(x, t) where we assume a fixed enumeration
of all possible states.
Given v1, . . . , vm, α1, . . . ,αm, and some initial popula-

tions x(0) = (x1(0), . . . , xn(0)) with P(X(0) = x(0)) = 1,
the Markov chainX is uniquely specified and its evolution
is given by the CME

d
dt

p(t) = p(t)Q, (1)

where Q is the infinitesimal generator matrix of X with
Q(x, y) = αj(x) if y = x+ vj and reaction type j is possible
in state x. Note that, in order to simplify our presentation,
we assume here that all vectors vj are distinct. All remain-
ing entries of Q are zero except for the diagonal entries
which are equal to the negative row sum. The ordinary
first-order differential equation in (1) is a direct conse-
quence of the Kolmogorov forward equation but standard
numerical solution techniques for systems of first-order
linear equations cannot be applied to solve (1) because
the number of nonzero entries in Q typically exceeds the
available memory capacity for systems of realistic size. If
the expected populations of all species remain small (at
most a few hundreds) then the CME can be efficiently
approximated using projection methods [14-16] or fast
uniformization methods [17,18]. The idea of these meth-
ods is to avoid an exhaustive state space exploration and,
depending on a certain time interval, restrict the analysis
of the system to a subset of states.
We are interested in the partial derivatives of p(t)w.r.t. a

certain parameter λ such as reaction rate constants cj, j ∈
{1, . . . ,m} or initial populations xi(0), i ∈ {1, . . . , n}. Later,
they will be used to maximize the likelihood of observa-
tions and to find optimal parameters. In order to explicitly
indicate the dependence of p(t) on λ we may write pλ(t)
instead of p(t) and pλ(x, t) instead of p(x, t). We define the
row vector sλ(t) as the derivative of pλ(t) w.r.t. λ, i.e.,

sλ(t) = ∂pλ(t)
∂λ

= lim�→0
pλ+�(t) − pλ(t)

�
.

We denote the entry in sλ(t) that corresponds to state x by
sλ(x, t). Note that we use bold face for vectors. By (1), we
find that sλ(t) is the solution of the system of ODEs

d
dt

sλ(t) = sλ(t)Q + pλ(t)
∂

∂λ
Q, (2)

when choosing λ = cj for j ∈ {1, . . . ,m}. In this case, the
initial condition is sλ(x, 0) = 0 for all x since p(x, 0) is
independent of cj. If the unknown parameter is the i-th
initial population, i.e., λ = xi(0), then we get

d
dt

sλ(t) = sλ(t)Q, (3)

with initial condition sλ(0) = ∂
∂λ
pλ(0) since Q is inde-

pendent of xi(0). Similar ODEs can be derived for higher
order derivatives of the CME.

Parameter inference
Following the notation in [4], we assume that observa-
tions of the reaction network are made at time instances
t1, . . . , tR ∈ R≥0 where t1 < · · · < tR. Since it is unre-
alistic to assume that all species can be observed, we
assume w.l.o.g. that the species are ordered such that we
have observations of X1, . . . ,Xd for some fixed d with
1 ≤ d ≤ n, i.e. Oi(t�) is the observed number of species
i at time t� for i ∈ {1, . . . , d} and � ∈ {1, . . . ,R}. Let
O(t�) = (O1(t�), . . . ,Od(t�)) be the corresponding vec-
tor of observations. Since these observations are typically
subject to measurement errors, we assume that Oi(t�) =
Xi(t�)+εi(t�)where the error terms εi(t�) are independent
and identically normally distributed with mean zero and
standard deviation σ . Note that Xi(t�) is the true popula-
tion of the i-th species at time t�. Clearly, this implies that,
conditional on Xi(t�), the random variable Oi(t�) is inde-
pendent of all other observations as well as independent
of the history of X before time t�.
We assume further that we do not know the values of

the rate constants c = (c1, . . . , cm) and our aim is to
estimate these constants. Similarly, the initial populations
x(0) and the exact standard deviation σ of the error terms
are unknown and must be estimated. We remark that
it is straightforward to extend the estimation framework
such that a covariance matrix for a multivariate normal
distribution of the error terms is estimated. In this way,
different measurement errors of the species can be taken
into account as well as dependencies between error terms.
Let f denote the joint density of O(t1), . . . ,O(tR) and,

by convenient abuse of notation, for a vector x� =
(x1, . . . , xd) let X(t�) = x� represent the event that
Xi(t�) = xi for 1 ≤ i ≤ d. In other words, X(t�) = x�

means that the populations of the observed species at time
t� equal the populations of vector x�. Note that this event
corresponds to a set of states of the Markov process since
dmay be smaller than n. More precisely, Pr (X(t�) = x�) =∑

y:yi=xi,i≤d p(y, t�). Now the likelihood of the observation
sequenceO(t1), . . . ,O(tR) is given by

L = f (O(t1), . . . ,O(tR))

=
∑
x1

. . .
∑
xR

f (O(t1), . . . ,O(tR) |

X(t1) = x1, . . . ,X(tR) = xR)

Pr(X(t1) = x1, . . . ,X(tR) = xR) .

(4)

Note that L depends on the chosen rate parameters c and
the initial populations x(0) since the probability measure
Pr(·) does. Furthermore, L depends on σ since the density
f does. When necessary, we will make this dependence
explicit by writing L(x(0), c, σ) instead of L. We now
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seek constants c∗, initial populations x(0) and a standard
deviation σ ∗ such that

L(x(0)∗, c∗, σ ∗) = max
x(0),σ ,c

L(x(0), c, σ) (5)

where the maximum is taken over all σ > 0 and vectors
x(0), c with all components strictly positive. This opti-
mization problem is known as the maximum likelihood
problem [19]. Note that x(0)∗, c∗ and σ ∗ are random vari-
ables because they depend on the (random) observations
O(t1), . . . ,O(tR).
If more than one sequence of observations is made,

then the corresponding likelihood is the product of
the likelihoods of all individual sequences. More pre-
cisely, if Ok(tl) is the k-th observation that has been
observed at time instant tl where k ∈ {1, . . . ,K}, then
we define Lk(x(0), c, σ) as the probability to observe
Ok(t1), . . . ,Ok(tR) and maximize

K∏
k=1

Lk(x(0), c, σ). (6)

In what follows, we concentrate on expressions for
Lk(x(0), c, σ) and ∂

∂cjLk(x(0), c, σ).We first assumeK = 1
and drop index k. We consider the case K > 1 later.
In (4) we sum over all population vectors x1, . . . , xR of
dimension d such that Pr(X(t�) = x�, 1 ≤ � ≤ R) > 0.
Since X has a large or even infinite state space, it is com-
putationally infeasible to explore all possible sequences.
In Section “Numerical approximation algorithm” we pro-
pose an algorithm to approximate the likelihoods and
their derivatives by dynamically truncating the state space
and using the fact that (4) can be written as a product of
vectors and matrices. Let φσ be the density of the nor-
mal distribution with mean zero and standard deviation
σ . Then

f (O(t1), . . . ,O(tR) | X(t1) = x1, . . . ,X(tR) = xR)

=
R∏

�=1

d∏
i=1

f (Oi(t�) | Xi(t�) = xi�)

=
R∏

�=1

d∏
i=1

φσ (Oi(t�) − xi�),

where x� = (x1�, . . . , xd�). If we write w(x�) for∏d
i=1 φσ (Oi(t�) − xi�), then the sequence x1, . . . , xR has

“weight”
∏R

�=1 w(x�) and, thus,

L =
∑
x1

. . .
∑
xR

Pr(X(t1) = x1, . . . ,X(tR) = xR)
R∏

�=1
w(x�).

(7)

Moreover, for the probability of the sequence x1, . . . , xR
we have

Pr (X(t1) = x1, . . . ,X(tR) = xR) = p(x1, t1)P2(x1, x2) . . .

PR(xR−1, xR)

where P�(x, y) = Pr
(
X(t�) = y | X(t�−1) = x

)
for d-

dimensional population vectors x and y. Hence, (7) can be
written as

L =
∑
x1

p(x1, t1)w(x1)
∑
x2

P2(x1, x2)w(x2) . . .

∑
xR

PR(xR−1, xR)w(xR).
(8)

Assume that d = n and let P� be the matrix with entries
P�(x, y) for all possible states x, y. Note that P� is the tran-
sition probability matrix of X for time step t� − t�−1 and
thus the general solution eQ(t�−t�−1) of the Kolmogorov
forward and backward differential equations

d
dt

P� = QP�,
d
dt

P� = P�Q.

In this case, using p(t1) = p(t0)P1 with t0 = 0, we can
write (8) in matrix-vector form as

L = p(t0)P1W1P2W2 . . .PRWRe. (9)

Here, e is the vector with all entries equal to one and W�

is a diagonal matrix whose diagonal entries are all equal to
w(x�) with � ∈ {1, . . . ,R}, where W� is of the same size as
P�.
If d < n, then we still have the same matrix-vector

product as in (9), but define the weight w(x) of an n-
dimensional population vector as

w(x1, . . . , xn) =
d∏

i=1
φσ (Oi(t�) − xi),

i.e. the populations of the unobserved species have no
influence on the weight.
Since it is in general not possible to analytically obtain

parameters that maximize L, we use numerical optimiza-
tion techniques to find c∗, x(0)∗ and σ ∗. Typically, such
techniques iterate over values of c, x(0) and σ and increase
the likelihood L(c, σ) by following the gradient. There-
fore, we need to calculate the derivatives ∂

∂cjL,
∂

∂xi(0)L and
∂
∂σ

L. For ∂
∂cjL we obtain

∂

∂cj
L = ∂

∂cj
(p(t0)P1W1P2W2 . . .PRWRe)

= p(t0)

⎛
⎝ R∑

�=1

(
∂

∂cj
P�

)
W�

∏
�′ 	=�

P�′W�′

⎞
⎠ e.

(10)

The derivative of L w.r.t. xi(0) and σ is derived analo-
gously. The only difference is that p(t0) is dependent on
xi(0) and P1, . . . ,PR are independent of σ butW1, . . . ,WR
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depend on σ . It is also important to note that expressions
for partial derivatives of second order can be derived in
a similar way. These derivatives can then be used for an
efficient gradient-based local optimization.
For K > 1 observation sequences we can maximize the

log-likelihood

log
K∏

k=1
Lk =

K∑
k=1

logLk , (11)

instead of the likelihood in (6). Note that the derivatives
are then given by

∂

∂λ

K∑
k=1

logLk =
K∑

k=1

∂
∂λ
Lk

Lk
, (12)

where λ is cj, xi(0) or σ . It is also important to note
that only the weights w(x�) depend on k, that is, on
the observed sequenceOk(t1), . . . ,Ok(tR). Thus, when we
compute Lk based on (9) we use for all k the same tran-
sition matrices P1, . . . ,PR and the same initial conditions
p(t0), but possibly different matricesW1, . . . ,WR.

Numerical approximation algorithm
In this section, we focus on the numerical approxima-
tion of the likelihood and the corresponding derivatives.
Our algorithm calculates an approximation of the likeli-
hood based on (9) by traversing the matrix-vector product
from the left to the right. The main idea behind the algo-
rithm is that instead of explicitly computing the matrices
P�, we express the vector-matrix product u (t�−1)P� as
a system of ODEs similar to the CME (cf. Equation (1)).
Note that even though P� is sparse the number of states
may be very large or infinite, in which case we cannot
compute P� explicitly. Let u(t0), . . . ,u(tR) be row vectors
that are obtained during the iteration over time points
t0, . . . , tR, that is, we define L recursively as L = u(tR)e
with u(t0) = p(t0) and

u(t�) = u(t�−1)P�W� for all 1 ≤ � ≤ R,

where t0 = 0. We solve R systems of ODEs
d
dt

ũ(t) = ũ(t)Q (13)

with initial condition ũ(t�−1) = u(t�−1) for the time inter-
val [ t�−1, t�) where � ∈ {1, . . . ,R}. After solving the �-th
system of ODEs we set u(t�) = ũ(t�)W� and finally com-
pute L = u(tR)e. We remark that this is the same as
solving the CME for different initial conditions and due
to the largeness problem of the state space we use the
dynamic truncation of the state space that we proposed in
previous work [17]. The idea is to consider only the most
relevant equations of the system (13), i.e., the equations
that correspond to those states xwhere the relative contri-
bution ũ(x, t)/(ũ(t�)e) is greater than a threshold δ. Since

during the integration the contribution of a state might
increase or decrease we add/remove equations on-the-fly
depending on the current contribution of the correspond-
ing state. Note that the structure of the CME allows us to
determine in a simple way which states will become rele-
vant in the next integration step. For a small time step of
length h we know that the probability being moved from
state x− vj to x is approximately αj(x− vj)h. Thus, we can
simply check whether a state that receives a certain proba-
bility inflow receives more than the threshold. In this case
we consider the corresponding equation in (13). Other-
wise, if a state does not receive enough probability inflow,
we do not consider it in (13). For more details on this
technique we refer to [17].
Since the vectors ũ(t�) do not sum up to one, we scale

all entries by multiplication with 1/(ũ(t�)e). This simpli-
fies the truncation of the state space using the significance
threshold δ since after scaling it can be interpreted as
a probability. In order to obtain the correct (unscaled)
likelihood, we compute L as L = ∏R

�=1 ũ(t�)e. For our
numerical implementation we used a threshold of δ =
10−15 and handle the derivatives of L in a similar way. To
shorten our presentation, we only consider the derivative
∂

∂cjL in the sequel of the article. Iterative schemes for ∂
∂σ

L
and ∂

∂xi(0)L are derived analogously. From (10) we obtain
∂

∂cjL = uj(tR)e with uj(t0) = 0 and

uj(t�) = (uj(t�−1)P�+u(t�−1)
∂

∂cj
P�)W� for all 1 ≤ � ≤ R,

where 0 is the vector with all entries zero. Thus, during the
solution of the �-th ODE in (13) we simultaneously solve

d
dt

ũj(t) = ũj(t)Q + ũ(t)
∂

∂cj
Q (14)

with initial condition ũj(t�−1) = uj(t�−1) for the time
interval [ t�−1, t�). As above, we set uj(t�) = ũj(t�)W� and
obtain ∂

∂cjL as uj(tR)e.
Solving (13) and (14) simultaneously is equivalent to the

computation of the partial derivatives in (2) with differ-
ent initial conditions. Numerical experiments show that
the approximation errors of the likelihood and its deriva-
tives are of the same order of magnitude as those of the
transient probabilities and their derivatives. For instance,
for a finite-state enzymatic reaction system that is small
enough to be solved without truncation we found that the
maximum absolute error in the approximations of the vec-
tors p(t) and sλ(t) is 10−8 if the truncation threshold is
δ = 10−15 (details not shown).
In the case of K observation sequences we repeat the

above algorithm in order to sequentially compute Lk for
k ∈ {1, . . . ,K}. We exploit (11) and (12) to compute the
total log-likelihood and its derivatives as a sum of indi-
vidual terms. In a similar way, second derivatives can be
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approximated. Obviously, it is possible to parallelize the
algorithm by computing Lk in parallel for all k.
In order to find values for which the likelihood becomes

maximal, global optimization techniques can be applied.
Those techniques usually use a heuristic for different ini-
tial values of the parameters and then follow the gradient
to find local optima of the likelihood. In this step the algo-
rithm proposed above is used since it approximates the
gradient of the likelihood. The approximated global opti-
mum is then chosen as the minimum/maximum of the
local optima, i.e, we determine those values of the param-
eters that give the largest likelihood. Clearly, this is an
approximation and we cannot guarantee that the global
optimum was found. Note that this would also be the case
if we could compute the exact likelihood. If, however, a
good heuristic for the starting points is chosen and the
number of starting points is large, then it is likely that
the approximation is accurate. Moreover, since we have
approximated the second derivative of the log-likelihood,
we can compute the entries of the Fisher information
matrix and use this to approximate the standard deviation
of the estimated parameters, i.e., we consider the square
root of the diagonal entries of the inverse of a matrix H
which is the Hessian matrix of the negative log-likelihood.
Assuming that the second derivative of the log-likelihood
is computed exactly, these entries asymptotically tend to
the standard deviations of the estimated parameters.
We remark that the approximation proposed above

becomes unfeasible if the reaction network contains
species with high molecule numbers since in this case the
number of states that have to be considered is very large. A
numerical approximation of the likelihood is, as the solu-
tion of the CME, only possible if the expected populations
of all species remain small (at most a few hundreds) and
if the dimension of the process is not too large. More-
over, if many parameters have to be estimated, the search
space of the optimization problem may become unfeasi-
bly large. It is however straightforward to parallelize local
optimizations starting from different initial point.

Numerical results
In this section we present numerical results of our param-
eter estimation algorithm applied to two models, the sim-
ple gene expression in Example 1 and a multi-attractor
model. The corresponding SBML files are provided as
Additional files 1 and 2. For both models, we generated
time series data using Monte-Carlo simulation where we
added white noise to represent measurement errors, i.e.
we added random terms to the populations that follow a
normal distribution with mean zero and a standard devia-
tion of σ . Our algorithm for the approximation of the like-
lihood is implemented in C++ and linked to MATLAB’s
optimization toolbox [20] which we use to minimize the
negative log-likelihood. The global optimization method

(Matlab’s GlobalSearch [21]) uses a scatter-search algo-
rithm to generate a set of trial points (potential starting
points) and heuristically decides when to perform a local
optimization. We ran our experiments on an Intel Core i7
at 2.8GHz with 8GB main memory.

Simple gene expression
For our first model, the simple gene expression as intro-
duced in Example 1, we chose the same parameters
as Reinker et al.[4] multiplied by a factor of 10, i.e.,
c = (0.270, 1.667, 4.0) and as the initial condition we
have ten mRNA molecules and the DNA is inactive. We
generated K observation sequences of length T = 100.0
and observed all species at R equidistant observation time
points. We added white noise with standard deviation
σ = 1.0 to the observedmRNAmolecule numbers at each
observation time point. For the case K = 5,R = 100 we
plot the generated observation sequences in Figure 1. We
estimated the reaction rate constants, the initial molecule
numbers, and the parameter σ of the measurement errors
for the case K = 5,R = 100 where we chose the inter-
val [ 10−5, 103] as a constraint for the rate constants,
the interval [ 0, 100] for the initial number of mRNA
molecules and [ 0, 5] for σ . Since we use a global optimiza-
tion method, the running time of our method depends
on the number of trial points generated by GlobalSearch.
In Figure 2 we plot the trial points (red points) and local
optimization runs (differently colored lines) for the case
of 10 (a), 100 (b) and 1000 (c) trial points. The intersec-
tion of the dashed blue lines represents the location of
the original parameters. In the case of ten trial points, the
running time was about one minute and the local opti-
mization was performed only once. In the case of 100 and
1000 trial points, the running times were about 22min
and 1.9 h, respectively and several local optimization runs
converged in nearly the same point. However, we remark
that in general the landscape of the target function might
have multiple local minima and require more trial points
resulting in longer running times.
We ran experiments for varying values of K and R

(K ,R ∈ {1, 2, 5, 10, 20, 50, 100}) to get insights whether
for this network it is more advantageous to have many
observation sequences with long observation intervals or
few observation sequences with a short time between
two successive observations. In addition, we ran the same
experiments with the restriction that only the number of
mRNA molecules was observable but not the state of the
gene. In both cases we approximated the standard devia-
tions of our estimators as ameasure of quality by repeating
our estimation procedure 100 times and by the Fisher
information matrix as explained at the end of the previous
section. We used 100 trial points for the global optimiza-
tion procedure and chose tighter constraints than above
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Figure 1 Time series data. Generated observation sequences for the gene expression (a) and multi-attractor (b)–(d)models. Each plot shows
K = 5 sequences with R = 100 time points.

for the rate constants ([ 0.01, 1] for c1 and [ 0.1, 10] for
c2, c3) to have a convenient total running time.
The results are depicted in Figure 3 for the fully observ-

able system and in Figure 4 for the restricted system,
where the state of the gene was not visible. In these figures
we present the estimations of the parameters c1, c2, c3, σ ,
and an estimation of the initial condition, i.e. the number
of mRNA molecules at time point t = 0. Moreover, we
give the total running time of the procedure (Figures 3f
and 4f). Our results are plotted as a gray landscape for all
combinations of K and R. The estimates are bounded by a
red grid enclosing an environment of one standard devia-
tion around the respective average over all 100 estimates
that we approximated. The real value of the parameter is
indicated by a dotted blue rectangle.
At first, we remark that neither the quality of the estima-

tion nor the running time of our algorithm is significantly
dependent on whether we observe the state of the gene
in addition to the mRNA level or not. Moreover, con-
cerning the estimation of all of the parameters, one can
witness that the estimates converge more quickly against
the real values along theK axis than the R axis and also the
standard deviations decrease faster. Consequently, at least
for the gene expression model, it is more advantageous
to increase the number of observation sequences, than
the number of measurements per sequence. For exam-
ple, K = 100 sequences with only one observation each
already provide enough information to estimate c1 up to

a relative error of around 2.1%. Unfortunately, in this case
the computation time is the highest since we have to com-
pute K individual likelihoods (one for each observation
sequence). Moreover, if R is small then the truncation
of the state space is less efficient. The reason is that we
have to integrate for a long time until we multiply with
the weight matrixW�. After this multiplication we decide
which states contribute significantly to the likelihood and
which states are neglected. We can, however, trade off
accuracy against running time by varying K.
For the measurement noise parameter σ we see that it

is more advantageous to increase R. Even five observa-
tion sequences with a high number of observations per
sequence (R = 100) suffice to estimate the noise up to a
relative error of around 10.2%. For the estimation of the
initial conditions, both K and R seem to play an equally
important role.
The standard deviations of the estimators give infor-

mation about the accuracy of the estimation. In order
to approximate the standard deviation we used statistics
over 100 repeated experiments. In a realistic setting one
would rather use the Fisher information matrix to approx-
imate the standard deviation of the estimators since it
is in most cases difficult to observe 100 · K observation
sequences of a real system. Therefore we compare the
results of one experiment with K observation sequences
and standard deviations approximated using the Fisher
information matrix to the case where the experiment is
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Figure 2 Start points and gradient convergence of the optimization procedure for the gene expression example: Red pluses show the
potential start points.We use 10, 100, and 1000 start points in case (a), (b), and (c), respectively. The markers that are connected by lines show the
iterative steps of the gradient convergence while the dashed blue line shows the true values of the parameters. We chose K = 5, R = 100 and
assume that the parameters are in the range [ 10−5, 103].
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Figure 3 Results of the gene expression case study with observable gene state. The dotted blue rectangle gives the true value of c1, c2, c3, σ
(obs. error), and mRNA(0). The red grid corresponds to the approximated standard deviation of the estimators.

repeated 100 times. The results for varying values ofK and
R are given in Table 1 We observe that the approximation
using the Fisher information matrix is in most cases close
to the approximation based on 100 repetitions as long asK
and R are not too small. This comes from the fact that the
Fisher information matrix converges to the true standard
deviation as the sample size increases.

Multi-attractor model
Our final example is a part of the multi-attractor model
considered by Zhou et al. [22]. It consists of the three
genes MafA, Pax4, and δ-gene, which interact with each
other as illustrated in Figure 5. The corresponding pro-
teins bind to specific promoter regions on the DNA and
(de-)activate the genes. The reaction network has 23 dif-
ferent gene states, also called modes, since each gene can
be on or off. It is infinite in three dimensions since for
the proteins there is no fixed upper bound. The edges

between the nodes in Figure 5 showwhether the protein of
a specific gene can bind to the promoter region of another
gene. Moreover, edges with normal arrow heads corre-
spond to binding without inhibition while the edges with
line heads show inhibition.
We list all 24 reactions in Table 2 For simplicity we

first assume that there is a common rate constant for all
protein production reactions (p), for all protein degrada-
tions (d), binding (b), and unbinding (u) reactions. We
further assume that initially all genes are active and no
proteins are present. For the rate constants we chose c =
(p, d, b,u) = (5.0, 0.1, 1.0, 1.0) and generated K ∈ {1, 5}
sample paths of length T = 10.0. We added normally
distributed noise with zero mean and standard deviation
σ = 1.0 to the protein levels at each of the R = 100
observation time points. Plots of the generated observa-
tion sequences are presented in Figure 1 b–d for the case
K = 5. For the global optimization we used ten trial
points. We chose the interval [ 0.1, 10] as a constraint for
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Figure 4 Results of the gene expression case study (as in Figure 3) but the state of the gene is not observed.

the rate constants p, b,u and the interval [ 0.01, 1] for d.
We estimated the parameters for all 23 − 1 = 7 possi-
bilities of observing or not observing the three protein
numbers where at least one of them had to be observ-
able. In addition we repeated the parameter estimation
for the fully observable system where in addition to the
three proteins also the state of the genes was observed.

The results are depicted in Figure 6 where the x-axis of
the plots refers to the observed proteins. For instance, the
third entry on the x-axis of the plot in Figure 6 a shows
the result of the estimation of parameter c1 = 5 based on
observation sequences where only the molecule numbers
of the proteins MafAProt and DeltaProt were observed.
For this case study, we used the Fisher information matrix

Table 1 Different approximations of the standard deviations of the estimators

Method K R c1 c2 c3 σ mRNA(0)

Fisher inf. matrix 10 10 0.0545104 0.561963 0.935324 0.364339 0.639471

100 experiments 0.0358142 0.198700 0.262223 0.392884 0.490305

Fisher inf. matrix 20 20 0.0324508 0.299487 0.451476 0.174095 0.594820

100 experiments 0.0304157 0.167431 0.287471 0.134506 0.436059

Fisher inf. matrix 50 50 0.0139185 0.110709 0.152229 0.0440282 0.238033

100 experiments 0.0140331 0.078516 0.146232 0.0353837 0.183888

Fisher inf. matrix 100 100 0.00866066 0.0548249 0.0728129 0.0182564 0.208469

100 experiments 0.00691956 0.0430123 0.0641821 0.0217544 0.187968
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Pax4

-gene

MafA

Figure 5 Illustration of the multi-attractor model.

to approximate the standard deviations of our estimators,
plotted as bars in Figure 6 with the estimated parameter
as midpoint. The fully observable case is labelled by “full”.
We observe in Figure 6 that as expected the accuracy

of the estimation and the running time of our algorithm
is best when we have full observability of the system and
gets worse with an increasing number of unobservable

Table 2 Chemical reactions of themulti-attractor model

PaxDna
p−→ PaxDna + PaxProt

PaxProt
d−→ ∅

PaxDna +DeltaProt
b−→ PaxDnaDeltaProt

PaxDnaDeltaProt
u−→ PaxDna +DeltaProt

MafADna
p−→ MafADna +MafAProt

MafAProt
d−→ ∅

MafADna + PaxProt
b−→ MafADnaPaxProt

MafADnaPaxProt
u−→ MafADna + PaxProt

MafADnaPaxProt
p−→ MafADnaPaxProt +MafAProt

MafADna +MafAProt
b−→ MafADnaMafAProt

MafADnaMafAProt
u−→ MafADna +MafAProt

MafADnaMafAProt
p−→ MafADnaMafAProt +MafAProt

MafADna +DeltaProt
b−→ MafADnaDeltaProt

MafADnaDeltaProt
u−→ MafADna +DeltaProt

DeltaDna
p−→ DeltaDna +DeltaProt

DeltaProt
d−→ ∅

DeltaDna + PaxProt
b−→ DeltaDnaPaxProt

DeltaDnaPaxProt
u−→ DeltaDna + PaxProt

DeltaDnaPaxProt
p−→ DeltaDnaPaxProt +DeltaProt

DeltaDna +MafAProt
b−→ DeltaDnaMafAProt

DeltaDnaMafAProt
u−→ DeltaDna +MafAProt

DeltaDna +DeltaProt
b−→ DeltaDnaDeltaProt

DeltaDnaDeltaProt
u−→ DeltaDna +DeltaProt

DeltaDnaDeltaProt
p−→ DeltaDnaDeltaProt +DeltaProt

species. Still the estimation quality is very high when
five observation sequences are provided for almost all
combinations and parameters. When only one observa-
tion sequence is given (K = 1), the parameter estima-
tion becomes unreliable and time consuming. This comes
from the fact that the quality of the approximation highly
depends on the generated observation sequence. It is pos-
sible to get much better and faster approximations with
a single observation sequence. However, we did not opti-
mize our results but generated one random observation
sequence and ran our estimation procedure once based
on this.
Recall that we chose common parameters p, d, b,u for

production, degradation, and (un-)binding for all three
protein species. Next we “decouple” the binding rates and
estimate the binding rate of each protein independently.
We illustrate our results in Figure 7. Again, in case of a
single observation sequence (K = 1) the estimation is
unreliable in most cases. If the true value of the param-
eter is unknown, then the high standard deviation shows
that more information (more observation sequences) is
necessary to estimate the parameter. In order to esti-
mate the binding rate of PaxProt, we see that observing
MafAProt yields the best result while for the binding rate
of MafAProt observing PaxProt is best. Only for the bind-
ing rate of DeltaProt, the best results are obtained when
the corresponding protein (DeltaProt) is observed. The
running times of the estimation procedure are between
10 and 80 h, usually increase with K and depend on the
observation sequences.
In Table 3 we list the results of estimating the produc-

tion rate 5.0 in the multi-attractor model where we chose
R = 100.More precisely, we estimated the production rate
of each protein independently when the other two pro-
teins were observed. Since the population of the PaxProt is
significantly smaller than the populations of the other two
proteins, its production rate is more difficult to estimate.
The production rate of MafAProt is accurately estimated
even if only a single observation sequence is consid-
ered. For estimating the production rate of DeltaProt,
K = 5 observation sequences are necessary to get an
accurate result.
Finally, we remark that for the multi-attractor model it

seems difficult to predict whether for a given parameter
the observation of a certain set of proteins yields a good
accuracy or not. It can, however, be hypothesized that, if
we want to accurately estimate the rate constant of a cer-
tain chemical reaction, then we should observe as many
of the involved species as possible. Moreover, it is rea-
sonable that constants of reactions that occur less often
are more difficult to estimate (such as the production of
PaxProt). In such a case more observation sequences are
necessary to provide reliable information about the speed
of the reaction.
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Figure 6 Parameter estimation results for the multi-attractor model. The x-axis shows the species that were observed during the estimation
procedure. The dotted blue line corresponds to the true value of c1, c2, c3, and c4, respectively. The error bars in (a)–(d) show the mean (plus/minus
the standard deviation) of the estimators. In (e) we plot the running time of the estimation procedure.

Conclusion
Parameter inference for stochastic models of cellular
processes demands huge computational resources. We
proposed an efficient numerical method to approximate
maximum likelihood estimators for a given set of obser-
vations. We consider the case where the observations

are subject to measurement errors and where only the
molecule numbers of some of the chemical species are
observed at certain points in time. In our experiments we
show that if the observations provide sufficient informa-
tion then parameters can be accurately identified. If only
little information is available then the approximations of
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Figure 7 Results of the multi-attractor (as in Figure 6), but we estimate the binding rate of each protein independently.

the standard deviations of the estimators indicate whether
more observations are necessary to accurately calibrate
certain parameters.

As future work we plan a comparison of our technique
to parameter estimation based on Bayesian inference.
In addition, we will examine whether a combination of
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Table 3 Production rate estimation in themulti-attractor
model

Protein K Estimated rate
constant

Standard
deviation

Time
(hours)

Observed
proteins

PaxProt 1 10.0 13.6159 7.45 MafAProt,
DeltaProt

5 0.5693 2.1842 6.34

MafAProt 1 4.9998 4.9884 11.62 PaxProt,
DeltaProt

5 5.4853 2.3873 13.86

DeltaProt 1 2.5453 1.8075 4.35 PaxProt,
MafAProt

5 5.3646 1.4682 12.39

methods based on prior knowledge and the maximum
likelihood method is useful. Future plans further include
parameter estimation methods for systems where some
chemical species have small molecule numbers while oth-
ers are high rendering a purely discrete representation
infeasible. In such cases, hybrid models are advantageous
where large populations are represented by continuous
deterministic variables while small populations are still
described by discrete random variables [23].

Additional files

Additional file 1: SBML file of the gene expression example.

• File name: genexpression.xml
• File format: SBML (see http://www.sbml.org/sbml/level2/version4)
• File extension: xml

Additional file 2: SBML file of the multiattractor model.

• File name: multiattractor.xml
• File format: SBML (see http://www.sbml.org/sbml/level2/version4)
• File extension: xml
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