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Abstract

Boolean models of regulatory networks are assumed to be tolerant to perturbations. That qualitatively implies that
each function can only depend on a few nodes. Biologically motivated constraints further show that functions
found in Boolean regulatory networks belong to certain classes of functions, for example, the unate functions. It
turns out that these classes have specific properties in the Fourier domain. That motivates us to study the problem
of detecting controlling nodes in classes of Boolean networks using spectral techniques. We consider networks
with unbalanced functions and functions of an average sensitivity less than 2

3k, where k is the number of
controlling variables for a function. Further, we consider the class of 1-low networks which include unate networks,
linear threshold networks, and networks with nested canalyzing functions. We show that the application of spectral
learning algorithms leads to both better time and sample complexity for the detection of controlling nodes
compared with algorithms based on exhaustive search. For a particular algorithm, we state analytical upper bounds
on the number of samples needed to find the controlling nodes of the Boolean functions. Further, improved
algorithms for detecting controlling nodes in large-scale unate networks are given and numerically studied.

1 Introduction
The reconstruction of genetic regulatory networks using
(possibly noisy) expression data is a contemporary pro-
blem in systems biology. Modern measurement meth-
ods, for example, the so-called microarrays, allow
measuring the expression levels of thousands of genes
under particular conditions. A major problem is to pre-
dict the structure of the underlying regulatory network.
The overall goal is to understand the processes in cells,
for example, how cells execute and control operations
required for the functions performed by the cell. In the
Boolean model, this implies that based on a given set of
observed state-transition pairs (samples), the Boolean
functions attached to each node need to be identified.
In general, this problem is quite hard, due to the large
number of possible Boolean functions. First results for
the noiseless case appeared 1998 in the work of Liang et
al. [1]. Their Reverse Engineering Algorithm (REVEAL)
tries in a first step to find the controlling nodes of each
node by estimating the mutual information between
possible variables and the regulatory function’s output.

After the inputs have been identified, the truth table of
the Boolean functions can be determined from the
samples. If the number of variables for each function is
at maximum K, the REVEAL algorithm considers any of
the

(
n
K

)
combinations of variables, where n is the number

of nodes in the network.
The numerical results in [1] suggest that it is possi-

ble to identify a Boolean network using a small num-
ber of samples. Akutsu et al. [2] gave an analytical and
constructive proof that it is possible to identify the
network using only O(log n) samples with high prob-
ability. For constant values of K, the given algorithm,
BOOL, has time complexity O(nK+1 · m) where m is the
number of samples. Later it was shown that a similar
algorithm also works in the presence of (low-levela)
noise [3]. These algorithms are based on exhaustive
search in two ways. First, they search through all

(
n
K

)
possible combinations of controlling nodes. Second,
they search through all of the 22

K possible Boolean
functions. Lähdesmäki et al. [4] overcame the problem
to search through all possible Boolean functions, redu-
cing the double exponential factor to roughly 2K. But
their algorithm still searches through all

(
n
K

)
possible

variable combinations, hence, runs roughly in time nK.
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If n is large, applying such an algorithm is prohibitive
even for moderate values of K.
The algorithms above implicitly solve two distinct

problems. First, the controlling nodes of all nodes have
to be detected, and second, each function has to be
determined. This paper is dedicated to algorithms for
detecting controlling nodes in Boolean networks. In
general, this problem can be solved by exhaustive
search in time nK. By exploiting structural properties
of certain classes of functions, the time and sample
complexity of the algorithms can be reduced. The
sample complexity of an algorithm is the number of
samples needed to detect the controlling nodes with a
predefined probability. In fact, one can readily apply
methods stemming from the area of PAC (probably
approximately correct) learning theory [5], as the
network identification problem can be reduced to the
problem of learning Boolean juntas, i.e., Boolean func-
tions that dependb only on a small number of their
arguments. This problem was studied by Arpe and
Reischuk [6] extending earlier work of Mossel et al.
[7,8].
The particular inference problem studied here is the

following. Given a synchronous Boolean network and a
set of input/output patterns, i.e.,

{(X′
1,Y

′
1), (X

′
2,Y

′
2), . . . , (X

′
m,Y

′
m)},

where X′
l and Y′

l describe noisy observations of two
successive network states Xl and Yl at some time tl
and tl + 1, respectively. The networks state Xl at time
tl is modeled using a uniformly distributed random
variable X.
The task to detect the controlling nodes can be

reduced to the problem to find the essential variables of
the Boolean functions. This problem is easier to solve
for some classes of functions, namely for nearly all
unbalanced functions and functions of an average sensi-
tivity less then 2

3k, where k is the number of controlling
variables for a function. Further the class of 1-low net-
works, which include unate networks, linear threshold
networks, and networks with nested canalyzing func-
tions, is considered. The application of spectral learning
algorithms leads to both better time and sample com-
plexity for the detection of controlling nodes compared
with exhaustive search. In particular, a slight improve-
ment in the algorithm given in [6] is presented, for
which analytical bounds on the number of samples
needed to find the controlling nodes are derived. It is
notable that for the class of 1-low networks, the time
complexity of the resulting algorithms is roughly n2.
The algorithm is further improved, where the main
focus lies on the identification of controlling nodes in a
large-scale unate network.

Finally, the performance of the improved algorithms is
evaluated for large-scale unate networks with 500 nodes
using numerical simulations. Further, the problem is
studied in a Boolean network model of a control net-
work of the central metabolism of Escherichia coli with
583 nodes [9]. Preliminary results of this work were pre-
sented in [10,11].
The outline of the paper is as follows. In Section 2,

Boolean networks are defined and the detection problem
is formally stated. The two classes of functions consid-
ered here are introduced and discussed. Section 3 gives
a brief introduction to the Fourier analysis of Boolean
functions and discusses the spectral properties of the
two classes of functions. Further, the algorithms are
stated and analyzed in 3.3 and 3.4. Simulation results
are presented in 3.5.

2 Regulatory networks and inference
2.1 Boolean regulatory networks
A Boolean network (BN) of n nodes can be described by
a numbered list F = {f1, f2, ..., fn} of Boolean functions
(BFs) fi : {-1, +1}

n ® {-1, +1}. Each node i in the net-
work has a binary state variable xi(t) Î {-1, +1} assigned,
which may vary in time t Î N. The networks state at
time t is given by x(t) = (x1, x2, ..., xn)(t) Î {-1, +1}n.
The state of a node i at time t + 1 is given as

xi(t + 1) = fi(x(t)),

i.e., given by the pre-state of the network x(t) and the
Boolean functions fi.
In general not all of the possible n variables of a func-

tion fi are essential. The ith variable is called essential to
f if and only if there exists at least one x Î {-1, +1}n

such that f(x1, ..., xi, ..., xn) ≠ f(x1, ..., -xi, ..., xn). An
equivalent terminology is that the function f depends on
the ith variable. For any function f, the set var(f) ⊆ {1,
..., n} is defined by

i ∈ var (f ) if and only if the ith variable is essential to f ;

hence, var(f) is called the set of essential variables of f.
If var(f) ≤ k, a function f with n variables is usually
called a (n, k)-junta.
Finally note that each BN can be associated with a

directed graph that allows describing the network using
graph theoretic terms. Let G(V, E) be a directed graph,
where V = {1, 2, ..., n} is the set of nodes and E ⊆ V ×
V is the set of edges. The set E is defined by

(i, j) ∈ E if and only if i ∈ var(fj).

2.2 The detection problem
Assume that there exists an unknown BN that is an
appropriate description of an underlying dynamical
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process, for example, a regulatory network. An experi-
ment generates state-transition pairs by observing the
process, but in general, the measurements of the state-
transitions are noisy. The challenge is now to detect the
functional dependencies between the nodes of the
network.
This problem can be restated as follows: Assume that a

function f is chosen at random from a subset of functions
F . A single state-transition contains a pre-state Xl Î {-1,
+1}n, chosen according to a well defined distribution and
the corresponding output of the function Yl = f(Xl). Each
component Xl, i and Yl is independently flipped with
probability �. In the following, � is called the noise rate.
In this way, a set of m noisy observations or samples,

Xm = {(X′
1,Y

′
1), (X

′
2,Y

′
2), . . . , (X

′
m,Y

′
m)},

is obtained. In the following, it is assumed that X is
uniformly distributed. Some comments on choosing X
uniformly distributed will be given in the last section.
Given a set of samples, the task is to detect the set of
essential variables of f. This should be achieved in an
efficient way, since the number of nodes can be very
large in realistic problems. Further, the probability of a
detection error should be as small as possible.

2.3 Classes of regulatory functions
Different classes of functions have been proposed to
model regulatory functions. The authors do not attempt
to interfere in this discussion. Merely, the approach
taken here is to show that many of the proposed func-
tions fall into two classes for which Fourier-based algo-
rithms provide an advantage in running time over
algorithms based on exhaustive search. A precise defini-
tion is given later. Two classes of functions that may be
reasonable models of functions in genetic regulatory
networks are presented. For both of these classes, it is
assumed that the number of essential variables is less or

equal to k. The first class, denoted by C
⌈ 2
3 k

⌉
, includes

• functions with average sensitivity less than 2
3k, and

• unbalanced functions,

where it is assumed that for any function f any restric-
tion f′ on k′ > 1 of its essential variables has an average
sensitivity less or equal than 2

3k
′ or is an unbalanced

functions (or both). Note that a restriction f′ is obtained
from f by setting some of its variables to fixed values.
The second class C1 includes

• unate functions, which further include
- nested canalizing functions, and
- linear threshold functions.

The average sensitivity of a Boolean function f is
defined as

as(f ) =
∑
i

Ii(f ),

where Ii(f) is the influence of the variable i on f, [12],
defined as

Ii
(
f
)

= Pr {f (X1, . . . ,Xi, . . . ,Xn) �= f (X1, . . . ,−Xi, . . . ,Xn)}. (1)

Basically, low average sensitivity is a prerequisite of
non-chaotic behavior in random Boolean networks
(RBNs), in particular, the expectation of the average sen-
sitivity has to be less or equal to 1 [13]. This motivates

to study the class C⌈ 2
3 k

⌉
as it is widely assumed that

Boolean models of biological networks are tolerant to
perturbations. Unbalanced functionsc are of interest due
to a similar reason; namely, it is well known that the
average sensitivity of balanced functions is lower
bounded by 1 [14]. Hence, a function that has average
sensitivity less than 1 is necessarily unbalanced.
Unate functions were shown to be of interest in the

biological context by Grefenstette et al. [15]. These
functions arise as a consequence of a biochemical
model. They can be defined in terms of monotone
functions. A function f is called monotone if f(x) ≤ f
(y) holds for every x ≤ y, where x ≤ y ⇔ xi ≤ yi. A
function f(x) = f(x1, x2, ..., xn) is said to be unate if
there exists some fixed s Î {-1, +1}n such that f(x1·s1,
x2·s2, ..., xn·sn) is a monotone function. Besides the
results of Grefenstette et al., the class of unate func-
tions is considered to be very promising because each
variable of a unate function is correlated with its out-
put. This property was conjectured to be important
from the first days on [1]. Secondly, it contains the
class of nested canalyzing functions and linear thresh-
old functions which can often be found in Boolean
models of regulatory networks. Kauffman et al. [16]
discussed nested canalizing functions in the context
of RBNs and found them to have a stabilizing effect
on the networks. Notably, Samal et al. [17] reported
that in the large-scale Boolean model of the regula-
tory network of the E. coli metabolism [9], the input
functions of 579 out of 583 genes are, at least, cana-
lyzing. Further investigations by the authors of the
present paper revealed that all functions are unate.
Linear threshold functions (LTFs) often appear in
Boolean models of regulatory networks, for example,
[18,19]. A Boolean function is a LTF if it can be
represented by

f (x1, x2, . . . , xn) =
{
+1 if w0 +

∑n
i=1 wi · xi ≥ 0

−1 otherwise
,
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where wi Î ℝ. For n < 4, the classes of unate and lin-
ear threshold functions coincide [20].

3 Learning essential variables of regulatory
functions
3.1 Fourier analysis and learning
Let f : {-1, 1}n ® {-1, 1} be a n-ary BF. Any function f
can be represented by its Fourier expansion

f (x) =
∑
U⊆[n]

f̂ (U) · χU(x), (2)

where [n] = {1, 2, ..., n} and

χU(x) =
∏
i∈U

xi

are the parity functions on variables in U. The Fourier
coefficients f̂ (U) appearing in Equation 2 are given by

f̂ (U) = 2−n
∑

x∈{−1,+1}n
f (x) · χU(x). (3)

The number of Fourier coefficients is 2n and each
takes values in the interval [-1, 1] and is a multiple of 2-
n+1. Parseval’s theorem can be stated as

∑
U⊆[n]

f̂ (U)2 = 1. (4)

A particular property that is used later is the follow-
ing. If f does not depend on the variable i, then

f̂ (U) = 0 if i ∈ U. (5)

Using this fact, Parseval’s theorem implies that for a
constant function f,

|f̂ (∅)| = 1 and f̂ (U) = 0 for all U �= ∅.
Further, if f is a (n, k)-junta, all coefficients f(U) with |

U| >k are zero, which reduces the maximal number of
non-zero coefficients to 2k. All coefficients are multiples
of 2-k+1, i.e., for some c Î ℤ

f̂ (U) = c · 2−k+1 with |c| ≤ 2k−1. (6)

Hence, for any non-zero f̂ (U),

min
U �=∅

|f̂ (U)| ≥ 2−k+1. (7)

Spectral learning techniques identify a function or its
dependencies from randomly drawn samples by estimat-
ing the spectral coefficients. Given a set of samples
Xm = {(X′

1, Y
′
1), . . . , (Xm, Ym ′)}, an estimator ĥ (U)of

the coefficient f̂ (U) is given by

ĥ(U) =
1

m(1 − 2ε)|U|+1

m∑
i=1

Y ′
j · χU(X′

j). (8)

A similar approach was first proposed in [21] for the
noiseless case and can also be used in the presence of
noise [22]. It can be shown that

E
{
ĥ(U)

}
= f̂ (U), (9)

see, for example, [22]. If the number of samples m
grows, the estimator Equation 8 will converge to its
expected value, namely f̂ (U).

3.2 Spectral properties of specific regulatory functions
The Boolean functions mentioned in Section 2.3 be
categorized according to their lowness [6].
Definition 1. A Boolean function f : {-1, +1}n ® {-1,

+1}is τ -low if for any i Î var(f) there exists a set U ⊆
[n] with 0 < |U| ≤ τ such that i Î U and

|f̂ (U)| > 0.

Clearly any function that is τ-low is also τ′-low if τ′ >τ.
The notation of lowness allows to define the following
families of classes.
Definition 2. Cτis the set of functions that are τ-low.
In this paper, the focus is on

⌈ 2
3k

⌉
-low and 1-low func-

tions. First, the latter class is considered. All unate func-
tions are 1-low. This follows as

|f̂ ({i})| = Ii(f ), if f is unate, (10)

[23], and the fact that for any Boolean function, the
influence of an essential variable is larger than zero.
Hence, if the ith variable of a unate function f is essen-
tial, the Fourier coefficient f̂ ({i}) is non-zero.
Now the class C

⌈ 2
3 k

⌉
is discussed, first the following

definition is needed.
Definition 3. A function f : {-1, +1}n ® {-1, +1} is

mth-order correlation immune if for all U ⊆ [n] with 1 ≤
|U| ≤ m

f̂ (U) = 0.

Correlation immune functions were considered by Sie-
genthaler [24] who used a different definition. The defi-
nition in terms of the Fourier coefficients as used here
is due to Xiao and Massey [25]. These functions are of
interest in cryptography, for example, to design combin-
ing functions of stream ciphers.
Unbalanced correlation immune functions cannot

exist for too large m as the next theorem shows.
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Theorem 1 (Mossel et al. [8]). Let f : {-1, +1}n ® {-1,
+1} be an unbalanced, mth order correlation immune
function. Then m ≤ 2

3 · n.
A similar proposition holds for functions with low

average sensitivity.
Proposition 1. Let f : {-1, +1}n ® {-1, +1} be a mth-order

correlation immune function such that as (f ) ≤ 2
3n, where X

Î {-1, +1}n is uniformly distributed. Then m ≤ 2
3 · n.

Proof. If f is unbalanced, the proposition is true. Sup-
pose f is balanced. Assume for contradiction that

|f̂ (U)| = 0 for 1 ≤ |U| ≤ m =
2
3
n. (11)

From Parseval’s theorem it follows that

as(f ) =
∑
U⊆[n]

|U|f̂ (U)2 =
∑

|U|>m

|U|f̂ (U)2

> m
∑
U �=∅

f̂ (U)2 = m · (1 − f̂ (∅)2) = 2
3
n

which contradicts the assumption of the proposition. □
Proposition 2. Let f be a function with k ≥ 2 essential

variables (out of n) such that any restriction f′ on k′ of
its essential variables, where 1 <k′ ≤ k, has an average
sensitivity less or equal than 2

3k
′or is an unbalanced

functions (or both). Then f is
⌈ 2
3k

⌉
-low.

Proof. First note that if k = 2 the proposition is true.
Now consider a function with k > 2. By assumption
there is a variable i Î var(f) with a “low” coefficient,
1 Input: X , n, d
2 Output: R̃ the essential variables
3 Global Parameters: τ, �
4 begin
5 R̃ = ∅;
6 foreach U ⊆ [n] and 1 ≤ |U| ≤ τ do

7 ĥ (U) ← (1 − 2ε)−|U|−1 · m−1 ∑
(x,y)∈χ y · χU(x);

8 if |ĥ(U)| ≥ 2−dthen
9 R̃ ← R̃ ∪ U;
10 end
11 end
12 end
Algorithm 1: τ-NOISY-FOURIERd

that is U ∋ i and |U| ≤ 2
3k. Consider the restrictions of

f to the variable i denoted with f-1 and f+1. It is straight-
forward to show that

f̂ (U) =
1
2

(
f̂+1(U\{i}) + (−1)|{i}∩U|f̂−1(U\{i})

)
. (12)

For variable j ≠ i there is a set V ∋ j and i ∉ V with
|V| ≤ 2

3 (k − 1) such that either f̂+1(V) �= 0 or f̂−1(V) �= 0
Eq. (12) implies that either f̂ (V) or f̂ (V ∪ {i}) not equal

to zero. In the worst case one has to consider the
coefficient f̂ (V ∪ {i}). Now note that as |V ∪ {i}| is an
integer number

|V ∪ {i}| ≤
⌊
2
3
(k − 1)

⌋
+ 1 ≤

⌈
2
3
k
⌉
.

This argument can now be repeated recursively
(applying Eq. (12) to f-1 and f+1) showing the
proposition. □

3.3 The τ-NOISY-FOURIERd algorithm
A simple algorithm to find the essential variables of
τ-low (n, k)-juntas directly follows from Equations 6 and
7. First, all Fourier coefficients up to weight τ are esti-
mated. The absolute value of each estimated coefficient

ĥ(U) is compared with a threshold. If a coefficient f̂ (U)
is non-zero, its absolute value cannot be smaller then
2-k+1, see Equation 7. Hence, if |ĥ(U)| is larger than 2-k,
the variables corresponding to U are classified as essen-
tial. The algorithm was given by [6], but they used 2-d-1

as threshold (see Line 8).
The following theorem appeared first in [6] but with a

different bound.
Theorem 2. Let f be a τ-low (n, k)-junta and

m ≥ 2 · 22k · (1 − 2ε)−2τ−2 ln
2nτ

δ
. (13)

Then Algorithm 1 identifies all essential variables with
probability 1 - δ.
The bound is even true if � is only an upper bound on

the noise rate. The theorem follows from applying stan-
dard Hoeffding bounds. Note that the bound above is
different to [6]. If τ = 1, the number of samples required
to reach a predefined probability of error is smaller by a
factor 4. This directly follows from the different thresh-
old used here. If τ > 1, it was claimed in [6] that nτ can
be replaced by n. But simulation results of the authors
(not shown) contradict this result; hence, we rely here
on the weaker result shown in Theorem 2. This issue
will be discussed in future work.

3.4 Improved algorithms
In the following section, two algorithms are discussed
that lead to better numerical results as Algorithm 1
especially for low k. The first algorithm is a straight for-
ward modification of the τ-NOISY-FOURIER algorithm
and is discussed in Section 3.4.1. The second algorithm
requires a further assumption on the functions to which
it is applied; namely, suppose that f is τ-low. If a variable
of the function f is set to a particular fixed value, i.e., -1
or +1, the restricted version of f is obtained (this will be
discussed in more detail later on). Now it has to be
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assumed that the restricted function is still τ-low, i.e.,
they have to be recursive τ-low. While it is possible to
define such classes, only unate functions are considered.
On the one hand, they naturally fulfill the constraint
defined above, as any restriction of a unate function is
again a unate function. On the other hand, they seem to
be the most important class of functions as discussed
earlier. Nevertheless, the following algorithms will be
formulated in a way such that it is clear how to apply
them for recursive τ-low functions.
3.4.1 A modification of the τ-NOISY-FOURIERd
Algorithm 1 suffers from a high number of so-called
type-2-errors, i.e., it classifies non-essential variables as
essential, especially for a small number of samples m.
Hence, a simple modification is to return only a limited
number of essential variables by taking only the variables
that correspond to the coefficients with largest absolute
value. The algorithm is denoted by τ -NOISY-FOURIER-
MOD and is shown below. The computational complexity
of the algorithm increases compared with Algorithm 1.
In line 8

(
n
τ

)
, many spectral coefficients have to be sorted

which can be done in roughly n2τ in the worst case [26].d

In Figure 1 on page 19, the effect of the modification on
the detection error is numerically studied.
3.4.2 The KJUNTA algorithm
The second algorithm is based on the original idea of
Mossel et al. [8] who recursively applied their algorithm
to restricted functions of the original. While they did for
other reasons, a slight modification of their approach
can be used to reduce the number of samples needed.
The running time of the algorithm is increased by an
exponential dependency on k.
1 Input: X , n, d
2 Output: R̃ the essential variables
3 Global Parameters: τ, �
4 begin
5 R̃ ← ∅;
6 foreach U ⊆ [n] and |U| ≤ τ do
7

ĥ(U) ← (1 − 2ε)−|U|−1 · m−1 · ∑
(x,y)∈X y · χU(x);

8 end
9 Ui : |ĥ(U1)| ≥ |ĥ(U2)| ≥ · · · ≥ |ĥ(Ul)| // mod:

sorted index;
10 for i = 1 to l do
11 if |R̃| < dthen // mod: limiting

condition

12 if |ĥ(Ui)| ≥ 2−d then R̃ ← R̃ ∪ Ui;
13 end
14 end
15 end
Algorithm 2: τ -NOISY-FOURIERMOD

To describe the algorithm, some additional definitions
are needed. Define a (n, d) restriction r = (r1, r2, ..., rn)
as a vector of length n which consists of symbols in {+1,
-1, *}, where the symbol * occurs exactly d times. The
restricted function f|r can be obtained from the function
f by fixing d arguments xi in the following way. If ri ≠ *
then xi = ri. All xi for i such that ri = * are the argu-
ments of f|r; hence, it depends on at most d arguments.
A vector x of length n matches if for all ri ≠ * it holds
that xi = ri. The restricted samples set Xρ is defined as
a subset of X that contains all samples (x, y) such that x
matches the restriction r, i.e.,

Xρ = 〈(x, y) ∈ X |x matches ρ〉.
The algorithm is now described as follows. Suppose

there exists a procedure IDENTIFY that can identify at
least one essential variable of a function f given a num-
ber of samples. If no essential variables exist, i.e., if f is
constant, the procedure returns the empty set Ø.
Given a (n, k)-junta f, with k > 0, and a set I ⊆ R = var

(f) that contains some essential variables that are already
known. Further, assume that there is a restriction r that
fixes exactly the variables in I. The function f|r can be
either the constant function or depend on some of the
variables that are not fixed yet. For the latter case sup-
pose that at least one new variable can be identified,
using procedure IDENTIFY. Denote the set of newly
identified variables with I. Then the procedure is contin-
ued with all of the 2|I| new restrictions that fix the

101 102 103 104
10−3

10−2

10−1

100

m

PE

Figure 1 The average detection error in 10000 trials: Theoretical bound (dashed), original (triangle), and modified (box) τ-NOISY-FOURIERd,
for unate functions with n = 500, � = 0.05, d = k = 1 (red), 2 (blue), 3 (black), 4 (yellow), 5 (brown).
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variables in I until all these sub-restrictions will be con-
stant. The resulting algorithm in a recursive form is
given as Algorithm 3. Initially, the algorithm is started
with KJUNTA(X ,n, d), where the global parameters (τ =
1, �) are fixed.
Most of the algorithm has been explained already.

First note that passing n as an argument is not neces-
sary, because it is an implicit parameter of the
1 Input: X , n, d
2 Output: R̃ the essential variables
3 Global Parameters: τ, �
4 begin
5 R̃ ← ∅;
6 I ← IDENTIFY(X , d);
7 if (d > |I| > 0) then
8 R̃′ ← ∅;
9 foreach restriction r do
10 R̃′ ← R̃′ ∪ KJUNTA (Xρ , n − |I|, d − |I|);
11 end

12 R̃ ← COMBINE
(
R̃, R̃′, ρ

)
;

13 end
14 end
Algorithm 3: KJUNTA
1 Input: X , n, d
2 Output: I variables found
3 Global Parameters: τ, �
4 begin
5 I ¬ ∅;
6 foreach U ⊆ [n] and |U| ≤ τ do
7

ĥ(U) ← (1 − 2ε)−|U|−1 · m−1 · ∑
(x,y)∈X y · χU(x);

8 end
9 M ← argmaxU:0<|U|≤τ |ĥ(U)|;
10 if (CONST (ĥ(M), ĥ(∅), d) = true)then I ¬ M ;
11 end
Algorithm 4: IDENTIFY
samples. Further comments should be given to the

line 9. The foreach loop is executed for each of the 2|I|

possible restrictions of the variables contained in I. For
each restriction, the corresponding restricted sample set
is calculated and passed in a new call to KJUNTA. Each
of these calls runs on smaller problems, namely finding
variables of a (n - |I|, d - |I|)-junta. Notably, each of
these runs is independent of the others. The variables
found are then combined with R̃ in line 11 using the
procedure COMBINE. This is not just a union of sets
since one has to take care about the labeling of the vari-
ables. For example, if R̃ = {1}, and a subsequent call of
KJUNTA returns variables joined to R̃′ = {1, 3}, combin-
ing both leads to R̃ = {1, 2, 4}.
The IDENTIFY procedure The question remains

how to identify some of the essential variables or how

to decide whether the function is constant. For τ-low
functions, it is sufficient to estimate all coefficients

f̂ (U) with |U| ≤ τ. In [7], it was proposed to search
for the first coefficient that is above a certain thresh-
old. The approach here is different. In particular, all
coefficients with weight less or equal τ are computed.
The coefficient with the maximum absolute value is
compared with the zero coefficient to distinguish
between a constant and a non-constant function.
How this can be done is discussed below. The result-
ing algorithm is formulated in terms of Algorithm 4
on page 12. In line 8, the procedure CONST is called
which tries to distinguish between a constant function
and a non-constant function. If a non-constant func-
tion is found, the variables in M are returned, other-
wise the empty set.
The CONST procedure In the following it is discussed

how a constant function can be distinguished from a non-
constant function, given that the function depends on not
more than k variables. This is done based on the zero coef-
ficient f̂ (∅) and the coefficient with the largest absolute

value, denoted by f̂ (M). Note that if and only if f is con-

stant, |f̂ (∅)| = 1 and f̂ (U) = 0 for any set U ≠ ∅ by Parse-

val’s theorem. If f is non-constant, |f̂ (∅)| < 1 and there

exists at least one coefficient with |f̂ (U)| > 0 for some U;

hence, it follows that |f̂ (M)| > 0.
To distinguish between a constant and a non-constant

function different procedures exist. The most simple
one was proposed by Mossel et al. which will be
denoted by CONST1. There, if |ĥ(∅)| > 1 − 2−d or

|ĥ(M)| < 2−d, the function is declared as constant.
For small d, a better procedure, that requires less sam-

ples, exists. It is denoted by CONST2. Given the 2-tuple

(ĥ(∅), ĥ(M)) compute the–in Euclidean distance– clo-
sest tuple (a, b) such that a < 1, b > 0 are multiples of
2-d+1. Hence, the function is declared as constant if

dist
(
(ĥ(∅), ĥ(M)), (1, 0)

)
< dist

(
(ĥ(∅), ĥ(M)), (α, β)

)
,

where dist (·,·) denotes the Euclidean distance.
A note on the computational complexity As men-

tioned, Algorithm 3 has an increased complexity compared
with Algorithm 1. In the worst case, the algorithm is called
2k times, but clearly each time on a smaller problem. If it is
assumed that ĥ (U) can be computed in timeO(n · m), the
algorithm runs in O(2k · n2 · m) for 1-low functions.
Obviously for constant k, this reduces toO(n2 · m).

3.5 Simulation results for unate networks
To compare the performance of the different algorithms,
the following procedure is used. Suppose a BF f is cho-
sen uniformly at random from a class F ⊆ Fn of n-ary
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τ-low functions, where τ and n are known. For the
functions f, a set of m noisy state-transitions
Xm = {(X′

l, Y
′
l )|l = 1..m} is generated as described in

Section 2.2. The noise rate is fixed to � = 0.05.
The most important indicator is the probability of a

detection error. Define E as the event {R̃ �= var(f )} where
R̃ is the detected variable set. The detection error
probability

PE = Pr
{
R̃ �= var(f )

}

is a prior indicator on the algorithm’s performance.
It should be mentioned that if there exists a function
f such that var(f) >d, the detection error probability PE
does not vanish, even for large m.
Further evaluation criteria that are used in Section

3.5.3 are the precision rate r and the false-negative rate
b. In the present context, the precision rate is defined as
the conditional probability that a detected variable is
indeed an essential variable, i.e.,

ρ = Pr
{
i ∈ var(f )|i ∈ R̃

}
.

An equivalent way of stating that matter is that a pre-
dicted edge e is in E, where G(V, E) is the associated
graph of the network. The false-negative rate is defined
as the conditional probability that an essential variable
is not detected as being essential,

β = Pr
{
i �∈ R̃|i ∈ var(f )

}
.

In a network, this can be interpreted as the fraction of
edges that have not been detected. The definitions
above are consistent with Zhao et al. [27] who defined
the type-1-error as the event that a node i is classified
as a controlling node of some node j although this is
not the case. Consequently the type-2-error is defined as
the event {i �∈ R̃|i ∈ var(f )}.
3.5.1 τ-NOISY-FOURIERd versus τ − NOISY − FOURIERmod

d
First, the modified version of the τ-NOISY-FOURIERd

algorithm is compared with the original algorithm.

In 10,000 independent experiments, unate functions
with exactly k essential variables are randomly drawn.
The parameter d is always set to k. The results are
presented in Figure 2, further the upper bounds on
the detection error probability (Theorem 2) are shown.
As promised τ − NOISY − FOURIERmod

d outperforms
the original algorithm.
3.5.2 τ − NOISY − FOURIERmod

d versus KJUNTA
Again a subset of unate functions with exactly k
essential variables is used to compare the
τ − NOISY − FOURIERmod

d algorithm with the KJUNTA
algorithm. The parameter d is always set to k. The
results are shown in Figure 2. For functions with a low
number of essential variables, the procedure CONST1
outperforms the τ-NOISY-FOURIERd algorithm. But
the better performance vanishes with an increasing
number of variables.

3.5.3 τ-NOISY-FOURIERd versus KJUNTA on an E. coli
network
In this simulation, the functions are chosen from the regu-
latory functions of the control network of the E. coli meta-
bolism [9]. This set includes functions with a different
number of essential variables. Further, also some constant
functions are included and some functions occur several
times. Each function f has 583 possible arguments but
depends on not more than eight variables. The functions
distribution on essential variables is given in Table 1 and
is equivalent to the in-degree distribution of the corre-
sponding network.e The results in Figure 3 are obtained
by applying the algorithms to each function in the set, this
experiment is performed 100 times.
Remarkable results: In the previous simulations, the

parameter d is always set to k. Further only functions
with exactly k essential variables are chosen. Here, the
parameter d is usually smaller than k, which implies
that not all variables can be found. Only variables with
influence large or equal 2-d can be detected. This is
implied by Equations 10 and 7. On the other hand, even
if d <k for some function f, the algorithm can possibly
detect some of the essential variables of f.

101 102 103 104
10−3

10−2

10−1

100

m

PE

Figure 2 The average detection error in 10,000 trials: τ − NOISY − FOURIERmod
d (box) and KJUNTA with CONST1 (circle) and CONST2

(diamond) procedure, unate functions (n = 500, � = 0.05, d = k = 1 (red), 2 (blue), 3 (black), 4 (yellow), 5 (brown).
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4 Conclusion
In this paper, the problem to detect controlling nodes in
Boolean networks is discussed. Boolean functions that
are relevant for modeling genetic networks seem to
belong to classes of functions for which spectral-based
algorithms provide an efficient solution–both, in com-
putational complexity and data needed. Especially the
algorithms for unate functions are highly efficient in
both running time and the number of samples needed
to identify controlling nodes. Further analytical bounds
on the probability of a detection error can be stated.
If the samples are chosen according to a uniform distri-

bution, the results are promising. Applying the methods
to the E. coli control network, with 583 nodes, shows
that using approximately 200 samples, it is possible
to find nearly 40% of all edges in the network with a
precision rate close to one. On the other hand, a wrong
selection of the parameter d can have a dramatic effect
on the precision. For example, if under the same

conditions d = 4 is chosen, the precision will drop below
0.5. Fortunately, the choice of the parameter can be
guided by the available analytical bounds of the detection
error probability. The latter is dominated by the probabil-
ity that the estimator ĥ({i}) will deviate from f̂ ({i}) by
more than +/- 2-d. But this also determines the precision
of the algorithm. Suppose that 200 samples are obtained
from the E. coli network. The analytical bounds shown in
Figure 1 suggest to choose d = 1 which indeed leads to a
high precision (see Figure 3).
Clearly, our assumption of uniformly distributed

samples is too optimistic. Fortunately, known results from
PAC learning [6] show that it is possible to use similar
algorithms for product distributed samples, i.e., in a
random vector X each Xi is chosen independently of
the others with a certain probability such that
−1 < E{Xi} = μi < 1. But there is a major problem: If
μmax = max1≤i≤n |μi| gets closer to 1, the number of sam-
ples needed will increase with roughly (1 - μmax)

-2k. In
unate networks, this coincides with the fact that the influ-
ences of the variables can become very small. Hence,
further investigations in this direction are necessary. This
would be a major step toward the application of spectral
algorithms in a real-world scenario.

Table 1 In-degree distribution of the Boolean network
(see text).

|var(f)| 0 1 2 3 4 5 6 7 8

# 12 293 159 66 38 9 4 0 2

10−1

100PE

0

0.5

1

ρ

101 102 103 104
0

0.2

0.4

0.6

0.8

1

m
β

Figure 3 Simulation results for the modified τ -NOISY-FOURIERmod
d (box) and KJUNTA with the CONST1 (circle) procedure applied

on the regulatory functions of a network of E. coli, see text. (n = 583, � = 0.05, d = k = 1 (red), 2 (blue), 3 (black), 4 (yellow), 5 (brown).
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Endnotes
aThe theoretical analysis requires the noise level to be
bounded below a small value. bThis will be defined
more precisely later. cA function is unbalanced if the
number of +1 and -1 in the truth table is different. dUs-
ing a better implementation as Algorithm 2, this can be
reduced to 2τ log N. eThe detailed table of the used
functions can be found in the supplementary material.
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