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Probabilistic polynomial dynamical systems for
reverse engineering of gene regulatory networks
Elena S Dimitrova1*, Indranil Mitra2 and Abdul Salam Jarrah3,4

Abstract

Elucidating the structure and/or dynamics of gene regulatory networks from experimental data is a major goal of
systems biology. Stochastic models have the potential to absorb noise, account for un-certainty, and help avoid
data overfitting. Within the frame work of probabilistic polynomial dynamical systems, we present an algorithm for
the reverse engineering of any gene regulatory network as a discrete, probabilistic polynomial dynamical system.
The resulting stochastic model is assembled from all minimal models in the model space and the probability
assignment is based on partitioning the model space according to the likeliness with which a minimal model
explains the observed data. We used this method to identify stochastic models for two published synthetic
network models. In both cases, the generated model retains the key features of the original model and compares
favorably to the resulting models from other algorithms.
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Introduction
The enormous accumulation of experimental data on the
activities of the living cell has triggered an increasing
interest in uncovering the biological networks behind the
observed data. This interest could be in identifying either
the static network, which is usually a labeled directed
graph describing how the different components of the
network are wired together, or the dynamic network,
which describes how the different components of the
network influence each other. Identifying dynamic mod-
els for gene regulatory networks from transcriptome data
is the topic of numerous published articles, and methods
have been proposed within different computational fra-
meworks, such as continuous models using differential
equations [1,2], discrete models using Boolean networks
[3], Petri nets [4-6], or Logical models [7,8], and statisti-
cal models using dynamic Baysein networks [9,10],
among many other methods. For an up-to-date review of
the state-of-the-art of the field, see, for example [11,12].
Most of these methods identify a particular model of the
network which could be deterministic or stochastic. Due
to the fact that the experimental data are typically noisy

and of limited amount and that gene regulatory networks
are believed to be stochastic, regardless of the used fra-
mework, stochastic models seem a natural choice
[9,13,14]. Furthermore, discrete models where a gene
could be in one of a finite number of states are more
intuitive, phenomenological descriptions of gene regula-
tory networks and, at the same time, do not require
much data to build. These models could actually be more
suitable, especially for large networks [15].
The discrete modeling framework for gene regulatory

networks that has received the most attention is Boolean
networks, which was introduced by Kauffman [3]. They
have been used successfully in modeling gene regulatory
and signaling networks; see, for example [16-18]. Many
reverse engineering methods have been developed to
infer such networks, see, for example [19,20].
For the purpose of better handling noisy data and the

uncertainty in model selection, Boolean networks were
extended to probabilistic Boolean networks (PBN) in
[13,21,22]. A PBN is a Boolean network where each
node i may possibly have more than one Boolean transi-
tion function, say fi1, . . . , fiti, where ti ≥ 1, and, to decide

the future state of i, a function f (i)j is chosen with prob-

ability pij, where pi1 + · · · + piti = 1. To be precise, to
each node i in a PBN, the set Fi = {(fij, pij)}j=1,...,ti of pos-
sible transition functions and their probabilities is
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assigned. Notice that if ti = 1 for all nodes in the net-
work, then the PBN is just a Boolean network. As it is
the case with Boolean networks, a PBN could be
updated synchronously or asynchronously. However,
throughout this article, we focus on synchronous PBN.
Aspects of PBNs, and also asynchronous PBNs, have
been studied in, for instance [23,24] and they have been
applied to the modeling of gene regulatory networks in,
for example, [25,26]. Furthermore, methods for inferring
PBN have been developed in [27].
One disadvantage of Boolean models for gene regula-

tory networks is the limited number of states in which a
gene can be. Indeed, although for a molecular biologist
the state of a gene is usually discrete, it could be not
only “expressed” and “not expressed” but also “over
expressed,” for example. There has thus been some con-
sideration of more-than-binary discrete models in the
Boolean network community. In the context of PBNs,
generalizations of Boolean networks for ternary gene
expression have been proposed in [28-31]. In addition,
in [32] a ternary model has been considered as a preli-
minary stage for a Boolean one.
Other discrete multistate modeling frameworks have

been developed too. Logical models [8] and K-bounded
Petri nets [6,33] are two multistate modeling frameworks
that have been used for modeling gene regulatory net-
works. A natural generalization of Boolean networks to
multistate networks are the so-called polynomial dynami-
cal systems (also known as algebraic models), which were
introduced in [34]. In an algebraic model, the set of pos-
sible states of each node is a finite set, and once the
mathematical structure of finite fields is imposed on that
set, the transition function of each node is necessarily a
polynomial. As this framework is rooted in computa-
tional algebra and algebraic geometry, results from these
fields are used for the reverse engineering of dynamic
and static biological networks [34-37], as well as for ana-
lyzing model dynamics [34,38], which usually is a chal-
lenge. Furthermore, in [39], it was shown that logical
models and K-bounded Petri nets can be viewed as poly-
nomial dynamical systems and algorithms for their trans-
lation into algebraic models were provided which
facilitates the analysis of their dynamics.
In this article, we first introduce a stochastic generali-

zation of polynomial dynamical systems, namely, prob-
abilistic polynomial dynamical systems, which is also a
generalization of the above-mentioned probabilistic Boo-
lean networks to multistate models. Then, using this fra-
mework, we present a novel method for the reverse
engineering of multistate gene regulatory networks from
limited and noisy data. The novelty of our approach is
two-fold. First, the stochastic model we construct is
based on all minimal models in the model space and
second, the probabilities assigned to the minimal models

are based on an algebraic partition, called Gröbner fan,
of the models space, which provides an algorithmic and
algebraic method for the construction of such stochastic
models.
In the next section, we present our method for the

reverse engineering of gene regulatory networks as
probabilistic polynomial dynamical systems. Then we
demonstrate this method using the yeast cell cycle
model in [17], as well as the synthetic network of the
yeast cell cycle in [40].

Methods
Probabilistic polynomial dynamical systems
Laubenbacher and Stigler [34] proposed a modeling
approach that describes a regulatory network on n
genes as a deterministic polynomial dynamical system
(PDS), i.e., a polynomial function (f1, ..., fn): K

n ® Kn,
where K is a finite field. (F is just a Boolean network
when K = {0, 1}.) Indeed, when K is a finite field, any
function F : Kn ® Kn is a polynomial function, i.e., F
can be described as (f1, ..., fn) where, for all i, fi : k

n ® k
is a polynomial (see Appendix 1). This shows that PDSs
are a suitable modeling framework naturally generalizing
Boolean networks. We expand this framework to
include stochastic models as follows.
A probabilistic polynomial dynamical system (PPDS) on

n nodes is a polynomial function (f1, ..., fn) : K
n ® Kn

where K is the set of possible sates of each node, and, for
each node i, fi = {(fi1, pi1), (fi2, pi2), . . . , (fiti , piti)} is the set
of functions that could be used to determine the future

state of node i with probabilities pij,
∑ti

j=1 pjtj = 1. Given

any state x = (x1, ..., xn ) in state space Kn of the system,
the next state is determined as follows. For each node i, a
local function fij is selected from fi with probability pij, and
is used to compute the next state of node i, say yi. The set
of all such transitions x ® y forms a directed graph, called
the state space or phase space, on the vertex set Kn. For
example, the PPDS (f1, f2) : F23 → F23, where

f1 = {(x22 + 1, 0.7), (x1x2 + x1, 0.3)},
f2 = {(x1 + 1, 0.2), (2x1x2, 0.8)},

(1)

and F3 = {0, 1, 2} is the finite field of three elements,
is a PPDS whose state space (Figure 1E) has nine states.
Notice that the state space of a PPDS is the union of
the state spaces of all associated deterministic systems.
In this example, as each node has two functions, there
are four deterministic systems and their state spaces are
in Figure 1A,B,C,D. For example, the state space of

f1 = x22 + 1

f2 = x1 + 1

is in Figure 1A.
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Reverse engineering PDSs
Laubenbacher and Stigler’s reverse-engineering method
[34] first constructs the set of all PDSs that fit the given
discretized data, which we call here the model space, and
then uses a minimality criterion to select one system from
the model space. A unique feature of their method is that
the model space is presented as an algebraic object. Their
algorithm is summarized here as Algorithm 2.1.
Unless all state transitions of the system are specified,

there will be more than one network that fits the given
data set. Since this much information is hardly ever avail-
able in practice, any reverse-engineering method usually
identifies one network model according to a pre-specified
criterion, and different methods typically identify differ-
ent models. In [34], first the set of all models is computed
and then a particular one f = (f1, ... fn) is chosen that satis-
fies the following property: For each node i, the transition
function fi is minimal in the sense that there is no non-
zero polynomial g Î k [x1 ... xn] such that fi = h + g and g
is identically equal to zero on the given time points. This
criterion for model selection is analogous to excluding
the terms of fi that vanish on the data. The advantage of
the polynomial modeling framework is that there is a
well-developed algorithmic theory that provides mathe-
matical tools for generating the model space as well as
identifying the minimal models.
Algorithm 2.1 Reverse engineering of PDSs.
Input: A discrete time series of network states

s1 = (s11, . . . , sn1), . . . , sm = (s1m, . . . , snm) ∈ Kn.

Output: All minimal PDS’s (f1, ..., fn) such that the
coordinate polynomials fi Î k [x1, ..., xn] satisfy fi (sj) =
si,j+1 for all i = 1, ..., n and j = 1, ..., m - 1, and fi does
not contain any term that vanish on the time series.

Step 1: Compute a PDS f0 : K
n ® Kn that fits the data.

There are several methods to do this, Lagrange interpo-
lation being one of them.
Step 2: Compute the collection I of all polynomials

that vanish on the data. Notice that if two polynomials
fi, gi Î k [x1, ..., xn ] satisfy fi(sj) = si,j+1 = gi (sj), then (fi -
gi)(sj) = 0 for all j. Therefore, in order to find all func-
tions that fit the data, we need to find all functions that
vanish on the given time points. Those functions form
an algebraic object called the ideal of points and can be
computed algorithmically.
Step 3: Reduce f0 = (f1, ..., fn) found in Step 1 modulo

the ideal I. That is, write each fi as fi = g + h with h Î I
and g being minimal in the sense that it cannot be
further decomposed into g = g’ + h’ with h’ Î I. In other
words, h represents the part of fi that lies in I and is,
therefore, identically equal to 0 on the given time series.
Algorithm 2.1 efficiently generates the set of all mini-

mal PDS models that fit the data. However, identifying a
single model may hardly be possible. There is a problem
originating from Step 2 of Algorithm 2.1: finding all
polynomials that vanish on a set of points. This is
equivalent to computing the ideal of these points and
computation of an ideal of points boils down to inter-
section of ideals. There is a well-known consequence of
the Buchberger algorithm [41] for their computation.
The output of the algorithm is a finite set of polyno-
mials {g1 , ..., gs } ⊂ k[x1, ..., xn], called a Gröbner basis
(for details see Appendix 2.1) that generates the ideal of
vanishing on the data polynomials I:

I = 〈g1, . . . , gs〉 =
{

s∑
i=1

higi : hi ∈ k[x1, . . . , xn]

}
.

Figure 1 The state spaces for the PPDS (1). (A), (B), (C), and (D) deterministic state spaces induced by {f11, f21}, {f11, f22}, {f12, f21}, and {f12, f22},
respectively; (E) the stochastic state space induced by (f1, f2) with the probability of each transition labeled. All of these graphs are produced
using the software Polynome [58].
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The Gröbner basis, however, is not unique and its
computation depends on the way the polynomial terms
are ordered, called monomial ordering (Definition 2.1).
The reason is that the remainder of polynomial division
in polynomial rings in more than one variable is not
unique and depends on the way the monomials are
ordered. In contrast, this is not an issue in k [x] (a poly-
nomial ring in one variable) where the monomials are
ordered by degree: ... ≻ xm+1 ≻ xm ≻ ... x2 ≻ x ≻ 1. How-
ever, whenever there is more than one variable, there is
more than one choice for ordering the monomials (e.g.,
x2 ≻ xy and xy ≻ x2 are both possible) and thus the pos-
sibility of obtaining several different Gröbner bases.
Consequently, the PDS model generated in Step 3 also
depends on the choice of monomial ordering, as Exam-
ple 3.1 illustrates.
Since different monomial orderings may give rise to

different polynomial models, considering only one arbi-
trarily chosen monomial ordering is not sufficient.
Therefore, a systematic method for studying the mono-
mial orderings that affect the model selection is crucial
for modeling approaches utilizing Gröbner bases. A
naïve approach is to compute all possible Gröbner bases
with respect to all monomial orderings. The number of
monomial orderings, however, grows rapidly with the
number of variables n and can be as large as n2n! [42]
and hence considering all of them is computationally
challenging. An alternative approach presented in [43]
generates a collection of polynomial models from a
fixed number of orderings (all graded reverse lexico-
graphic) with random variable orderings and computes
a consensus model using a game-theoretic method.
While it is reasonable to try to avoid considering all
monomial orderings, restricting oneself to variable
orderings within a fixed monomial ordering will very
likely miss a large number of PDS models that fit the
data. Fortunately, the correspondence between Gröbner
bases and monomial orderings is one-to-many. In [35],
we presented a method which guarantees that no PDS
model fitting the data is overlooked. Like [43], we
avoided checking all possible monomial orderings but
instead identified only those that produce distinct PDS
models. The method is based on the combinatorial
structure known as the Gröbner fan of a polynomial
ideal which we discuss in more detail in Appendix 2.4.
The Gröbner fan of an ideal I [44] is a polyhedral com-
plex of cones with the property that every point encodes
a monomial ordering. The cones are in bijective corre-
spondence with the distinct Gröbner bases of I. (To be
precise, the correspondence is to the marked reduced
Gröbner bases of I). Therefore, it is sufficient to select
exactly one monomial ordering per cone and, ignoring
the rest of the orderings, still guarantee that all distinct
models are generated. In addition, the relative number

of monomial orderings under which a particular PDS
model is generated provides an insight into the likeli-
hood that the model is a good representation of the sys-
tem; for details on this idea see Appendix 3. An
excellent implementation of an algorithm for computing
the Gröbner fan of an ideal is the software package
Gfan [45].

Algorithm for PPDS computation
We propose the following algorithm for the reverse
engineering of gene regulatory networks as PPDS mod-
els from time series of discrete data. The resulting PPDS
consists of all possible reduced PDS models that fit the
data. The probability that we assign to each model is
proportional to the relative volume of the Gröbner cone
that produced that model. See Appendix 3 for assump-
tions and example.
Algorithm 3.1 Reverse engineering of PPDSs.
Input: A discrete time series of a gene regulatory net-

work on n nodes x1, ..., xn: S = {(s11 , ..., sn1), ..., (s1m , ...,
snm)} ⊆ Kn, where K is a finite field.
Output: A probabilistic PDS model F, which is a list of

all possible reduced local polynomials for each x1, ..., xn,
together with their corresponding probabilities.
Step 1: Compute a particular PDS F0 : Kn ® Kn that

fits S.
Step 2: Compute the ideal I of polynomials that vanish

on S.
Step 3: Compute the Gröbner fan G of the ideal I and

the relative sizes of its cones, c1, ..., cs (with c1 + ... + cs
= 1).
Step 4: Select one (any) monomial ordering from each

cone, ≺1, ..., ≺s. For each i = 1, ..., s, reduce F0 modulo I
using a Gröbner basis computed with respect to ≺i. Let
the reduced PDS’s be F1 = {f11, f12, ..., f1t}, ..., Fs = {fs1,
fs2, ..., fst} and adding the cone sizes redefine them as Fi
= {(fi1, c1), (fi2, c2), ..., (fit, ct)}.
Step 5: Construct the list F = {{(f11, c1), (f21 , c2), ...,

(fs1, cs)}, ..., {(f1t, c1), (f2t, c2), ..., (fst, cs)}}. For a fixed i, if
fji = fki for some j and k, then “merge” the two local
polynomials by adding their corresponding probabilities:
(fji, cj + ck).
Algorithm 3.1 guarantees that all distinct minimal

PDS models will be generated. However, this comes at
the expense of having to compute the entire Gröbner
fan of the ideal of points. For small networks the com-
putation of the fan is feasible but as the number of net-
work nodes increases, the complexity of the Gröbner
fan computation becomes prohibitive [46]. As men-
tioned earlier, the correspondence between PDS models
and Gröbner bases is one-to-many. Therefore, comput-
ing the entire Gröbner fan of the ideal of vanishing
polynomials is excessive and instead a finite subset of
points from the fan should be sufficient. This finite
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subset needs to be carefully selected if we want it to
reflect the structure of the entire Gröbner fan. Since we
want to rank the dependencies according to their
strength, the number of points (weight vectors) we
select from a Gröbner cone should correspond to the
relative size of this cone with respect to the other cones.
That is, we want to sample from the Gröbner fan uni-
formly, so that the relative frequency with which we
select term orders from the fan is approximately equal
to the relative sizes of its cones. We do this through
random sampling of the Gröbner fan of the ideal of
points as in [47]. If the number of points is sufficiently
large, their distribution approximately reflects the rela-
tive size of the Gröbner cones. The number of points is
determined using a t test for proportion. Consequently,
steps 3 and 4 of Algorithm 3.1 have to be modified in
such a way that direct computation of the Gröbner fan
is avoided.
Step 3’: Select vectors w1, ..., ws of length n, with s

large, in such a way that every (nonnegative integer)
vector in the Gröbner fan of I has equal probability of
being chosen.
Step 4’: For each i = 1, ..., s, use wi to define a mono-

mial ordering ≺i and reduce F0 modulo I using a Gröb-
ner basis computed with respect to ≺i.

Examples and results
Reverse engineering of the yeast cell cycle
We applied the PPDS method to the reverse engineering
of the gene regulatory network of the cell cycle in Sac-
charomyces cerevisiae starting from a data set generated
from the well-known discrete model suggested by Li et
al. [17]. The cell cycle is the process of cell growth and
division and consists of four phases. The cell cycle in S.
cerevisiae has been extensively studied and about 800
genes are known to participate in the process. It is
believed, however, that the number of key regulators is
much smaller and, based on an extensive literature
review [17] constructed a Boolean network on 11 dis-
tinct nodes: Cln3, MBF, SBF, Cln1, 2, Cdh1, Swi5,
Cdc20 and Cdc14, Clb5, 6, Sic1, Clb1, 2, Mcm1/SFF.
For the network dynamics, a threshold function is
assigned to each node in the network according to (2),
where aij represents the weight of effect of node j on
node i.

Si(t + 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,
∑
j
aijSj(t) > 0

0
∑
j
aijSj(t) < 0

Si(t)
∑
j
aijSj(t) = 0

(2)

This model captures the known features of the cell
cycle dynamics. Furthermore, the trajectory of the

known cell cycle sequence is stable and attracting, as its
size is 1764 out of the total of 2048 states. The remain-
ing states are distributed into 6 very small trajectories.
Each of these trajectories converges to a steady state as
well.
We used as input to our Algorithm 3.1 54 input-out-

put transitions, four of which are steady states (see
Table 1). Our reverse engineering algorithm generated
the PPDS (6). The state space of this system consists of
14 connected components, where each component ends
in a steady state. The built-in four steady states belong
to components of sizes very close to those of the origi-
nal system. In addition, the other three steady states in
the original system were also recovered. These results
are summarized in Table 2. The seven steady states of
our model, which are not in the original system, with
one exception belong to very small components (less
than 30 points).
Further, we assessed the quality of the dependency

graph of the inferred model using three standard net-
work measures: positive predictive value, PPV = TP/(TP
+ FP) = 0.83, specificity , Sp = TN/(TN + FP) = 0.94,
and sensitivity, Se = TP/(TP + FN) = 0.69, where TP
and TN are the numbers of true positive and negative
interactions, respectively, and FP and FN are the num-
bers of false positive and false negative interactions,
respectively, weighted by the corresponding probabilities
given after every polynomial in (6). The high values of
the three measures indicate that the proposed method is
not only capable of capturing the dynamic behavior of
the system but also its static wiring network.

Comparison to other methods
We also performed a comparison of our algorithm to
several other reverse engineering methods. In [40], Can-
tone et al. built in S. cerevisiae a synthetic network for
in vivo “benchmarking” of reverse-engineering and mod-
eling approaches. The network in Figure 2 is composed
of five genes (CBF1, GAL4, SWI5, GAL80, and ASH1)
that regulate each other through a variety of regulatory
interactions. The mathematical model of the network is
based on nonlinear differential equations obtained from
standard mass-balance kinetic laws. Time series and
steady-state expression data were measured after multi-
ple perturbations. In particular, they performed pertur-
bation experiments by shifting cells from glucose to
galactose ("switch-on” experiments) and from galactose
to glucose ("switch-off” experiments). The synthetic net-
work was then used to assess the ability of experimental
and computational approaches to infer regulatory inter-
actions from gene expression data. Four published algo-
rithms were selected as representatives of reverse-
engineering approaches: BANJO (Bayesian networks)
[48], NIR and TSNI (ordinary differential equations)

Dimitrova et al. EURASIP Journal on Bioinformatics and Systems Biology 2011, 2011:1
http://bsb.eurasipjournals.com/content/2011/1/1

Page 5 of 13



Ta
b
le

1
Th

e
54

st
at
e
tr
an

si
ti
on

s
us
ed

fo
r
g
en

er
at
in
g
th
e
PP

D
S
m
od

el
(6
),
ea

ch
re
p
re
se
n
te
d
b
y
a
p
ai
r
of

in
p
ut
-o
ut
p
ut

st
at
es

C
ln
3

M
BF

SB
F

C
ln
1,

2
C
d
h1

Sw
i5

C
d
c2
0
an

d
C
d
c

14
C
lb
5,

6
Si
c1

C
lb
1,

2
M
cm

1/
SF

F
C
ln
3

M
B
F

SB
F

C
ln
1,

2
C
d
h1

Sw
i5

C
d
c2
0
an

d
C
d
c1
4

C
lb
5,

6
Si
c1

C
lb
1,

2
M
cm

1/
SF

F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

1
1

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
1

0
1

0
0

0
0

1
1

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

1
0

0
0

1
1

0
0

0
0

0
0

0
0

1
0

0
0

0
1

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
1

0
1

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
1

1
0

0
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

1
0

0
1

0
0

0
0

0
1

1
1

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
1

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
1

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
1

0
0

1
0

0
0

0
0

0
0

1
1

1
0

1
1

0
1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
1

0
0

0
0

0
1

0
1

1
0

0
0

0
0

0
1

0
0

0
1

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

1
1

0
1

1
0

0
0

0
0

0
1

0
0

1
1

0
0

1
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

1
0

0
0

0
1

0
0

1
0

0
1

1
0

0
1

1
0

0
1

0
0

1
1

0
0

0
1

1
0

0
0

0
0

0
0

0
0

1
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
1

1
0

0
0

Dimitrova et al. EURASIP Journal on Bioinformatics and Systems Biology 2011, 2011:1
http://bsb.eurasipjournals.com/content/2011/1/1

Page 6 of 13



Ta
b
le

1
Th

e
54

st
at
e
tr
an

si
ti
on

s
us
ed

fo
r
g
en

er
at
in
g
th
e
PP

D
S
m
od

el
(6
),
ea

ch
re
p
re
se
n
te
d
b
y
a
p
ai
r
of

in
p
ut
-o
ut
p
ut

st
at
es

(C
on

tin
ue
d)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

0
0

0
1

0
0

1
0

0
0

0
0

0
0

1
1

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
1

0
1

1
0

0
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
0

1
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
0

0
1

1
0

1
1

0
0

0
0

1
0

1
0

0
0

0
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
1

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
1

0
0

1
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
1

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
1

0
0

1
0

1
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
1

1
0

1
1

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
1

0
0

1
1

Th
e
fo
ur

fix
ed

po
in
ts

ar
e
lis
te
d
fir
st

in
bo

ld
.T

he
tr
an

si
ti
on

s
ar
e
ge

ne
ra
te
d
fr
om

th
e
11

va
ria

bl
e
m
od

el
of

Li
et

al
.[
17

].

Dimitrova et al. EURASIP Journal on Bioinformatics and Systems Biology 2011, 2011:1
http://bsb.eurasipjournals.com/content/2011/1/1

Page 7 of 13



[49,50], and ARACNE (information theory) [51]. These
methods were assessed based on their positive predictive
value (PPV) and sensitivity (Se). In order to test the sig-
nificance of the algorithms, the “random” performance
was computed, which refers to the expected perfor-
mance of an algorithm that randomly assigns edges
between a pair of genes. For example, for a fully con-
nected network, the random algorithm would have a
100% accuracy (PPV = 1) for all the levels of sensitivity
(as any pair of genes is connected in the real network).
For the net-work in Figure 2, the expected PPV for a
random guess of directed interactions among genes is
PPV = 0.40, so any value higher than 0.4 will be signifi-
cant. (In the case of undirected interactions, the random
guess has PPV = 0.70.)
Using the same data sets, which we discretized into

three states applying the algorithm in [52], our method
(PPDS) performed well when compared to the best
method (the ordinary differential equations approach
TSNI) according to [40]. A summary is given in
Table 3. Notice that although the PPV value of PPDS
on the switch-on data is lower than that of TSNI, it is
still well above 0.40 and thus it is better than random.

Conclusion
Gene regulatory networks are structured as inter-con-
nected entities and their complex nature is inherently
stochastic. The framework of stochastic dynamical sys-
tems is natural for modeling and analyzing such

networks. We focused on PPDSs due to their applicabil-
ity to limited and possibly noisy data. Within this mod-
eling framework, we developed a systematic method
based on combinatorial topology, algebraic geometry,
and statistics for the reverse engineering of the
dynamics, as well as the gene dependencies, in biochem-
ical regulatory networks from experimental data. The
algorithm can handle large regulatory networks and
hence is applicable to many networks of interest. The
constructed models are comprised of minimal polyno-
mials according to the definition in [34]. We plan to
explore the use of other types of biologically relevant
functions, such as nested canalyzing functions [53]. An
algorithm for the inference of deterministic nested Boo-
lean canalyzing networks has recently been presented (F
Hinkelmann, A Jarrah: Inferring biologically relevant
models: nested canalyzing functions, submitted). Com-
bining this with our algorithm here will provide a sys-
tematic method for the reverse engineering of gene
regulatory networks as probabilistic Boolean nested
canalyzing networks.

Appendices
1 Polynomial dynamical systems
Definition 1.1 Let X be a finite set. A finite dynamical
system of dimension n is a function F = (f1, ..., fn) : X

n

® Xn with fi : X
n ® X.

By requiring that the cardinality of the set X be a
power of a prime number, one can impose on X the
structure of a finite field. This structure determines the
only type of functions fi that need to be considered. The
following theorem from [54] characterizes functions
over finite fields.
Theorem 1.1 Let k be a finite field. Then every func-

tion f : kn ® k is a polynomial of degree at most n.
Therefore, over a finite field, polynomials are the

appropriate modeling framework rather than a con-
straining assumption.
Definition 1.2 If the set X for a finite field, then any

function F : X ® X is called a polynomial dynamical
system (PDS).

Table 2 Comparison of the steady states of model (2)
and those of the probabilistic PDS (6) built via our
reverse engineering method using the data set in Table
1 generated from model (2)

Fixed
point

Is it
input?

Original system
component size

Reverse engineered
component size

1 No 1, 764 1, 015

2 Yes 151 70

3 No 109 9

4 No 9 9

5 Yes 7 7

6 Yes 9 5

7 Yes 1 1

Figure 2 The five gene synthetic networks in S. cerevisiae built
by Cantone et al. [40].

Table 3 PPV, positive predictive value and Se, sensitivity
of the reverse-engineering approaches NIR, TSNI, BANJO,
ARACNE, and PPDS when applied to data generated from
the synthetic network in [40]

Switch-on Swith-off

PPV Se PPV Se

NIR and TSNI 0.80 0.50 0.6 0.38

BANJO * * 0.6 0.38

ARACNE * * * *

PPDS 0.57 0.50 0.75 0.38

The symbol * stands for “worse than random.”
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Definition 1.3 A probabilistic polynomial dynami-
cal system (PPDS) on n nodes (f1, ..., fn) : K

n ® Kn

with parallel update order consists of n sets of local
functions and their associated probabilities such that
fi = {(fi1, pi1), (fi2, pi2), . . . , (fiti , piti)} is the set of local
functions that determine the dynamics of node i and∑ti

j=1 pjtj = 1. In order to determine each transition in the

state space of the system, (x1, ..., xn) ® (y1, ..., yn), for
each node i a local function fij is selected from fi with
probability pij.
As an example, see (1).

2 Concepts from commutative algebra and algebraic
geometry [55]
2.1 Gröbner bases
A polynomial in k[x1, ..., xn] is a linear combination of
monomials of the form xα = xα1

1 · · · xαn
n over k, where a is

the n-tuple exponent α = (α1, . . . ,αn) ∈ Zn
≥0. For many

purposes, such as polynomial division, it is necessary to
arrange the terms in a polynomial unambiguously in
some order. Unlike polynomials in one variable, there
are more than one way of ordering the terms (mono-
mials) of multivariate polynomials. Any ordering of the
monomials must be a total ordering, i.e., for every pair
of monomials xa and xb, exactly one of the following
must be true: xa ≺ xb, xa = xb, xa ≻ xb. Taking into
account the properties of the polynomial sum and pro-
duct operations, the following definition emerges.
Definition 2.1 A monomial ordering on k[x1, ..., xn]

is any relation ≻ on Zn
≥0 satisfying:

1. ≻ is a total ordering on Zn
≥0.

2. If a ≻ b and γ ∈ Zn
≥0, then a + g ≻ b + g.

3. ≻ is a well-ordering on Zn
≥0, i.e., every nonempty

subset of Zn
≥0 has a smallest element under ≻.

A monomial ordering can also be defined by a weight
vector ω = (ω1, ..., ωn) in Zn

≥0. We require that ω have
nonnegative coordinates in order for 1 to always be the
smallest monomial. Fix a monomial ordering ≻s, such as
≻lex. Then, for α,β ∈ Zn

≥0, define a ≻ ω,s b if and only if
ω · a ≻ ω · b, or ω · a = ω · b and a ≻s b.
Ideal membership problem Another problem with

multivariate polynomial division is that when dividing
a given polynomial into more than one polynomials,
the outcome may depend on the order in which the
division is carried out. Let f, g1, ..., gm Î k [x1, ..., xn]
be polynomials in the variables x1, ..., xn. The so-called
ideal membership problem is to determine whether
there are polynomials h1, ..., hm Î k[x1, ..., xn ] such
that f =

∑m
i=1 higi. To state this in the language of

abstract algebra, we define I = 〈g1, ..., gm〉 := {∑higi | h1,
..., hm Î k[x1, ..., xn]} . The polynomials in I form a so-

called ideal in k[x1, ..., xn], since I is closed under addi-
tion and multiplication by any polynomial in k[x1, ...,
xn], and I is generated by the set {g1, ..., gm}. The ideal
membership problem asks if f is an element of I . In
general, even under a fixed monomial ordering, the
order in which f is divided by the generating polyno-
mials fi affects the remainder r{fi}(f ). Therefore,
r{fi}(f ) �= 0 does not imply f ∉ I. Moreover, the generat-
ing set {f1, ..., fm} of the ideal I is not unique but a spe-
cial generating set G = {g1, . . . , gt} can be selected so
that the remainder of polynomial division of f by the
polynomials in G performed in any order is zero if and
only if f lies in I: rG(f ) = 0 ⇔ f ∈ I. A generating set
with this property is called a Gröbner basis and its pre-
cise definition will be given in Definition 2.3. Here we
point out that Gröbner bases provide an algorithmic
solution to the ideal membership problem and the
Buchberger algorithm [41] is designed to compute a
Gröbner basis for any ideal other than {0} and a fixed
monomial ordering.
2.2 Monomial Ideals
Gröbner bases are a key concept in computational alge-
bra. Their theory reduces questions about systems of
polynomial equations to the combinatorial study of
monomial ideals.
Definition 2.2 An ideal I ⊂ k[x1, ..., xn] is a monomial

ideal if I is generated by monomials, i.e., there is a sub-
set A ⊂ Zn

≥0 such that I = 〈xa | a Î A〉, i.e., consists of
all polynomials which are finite sums of the form∑

α∈A hαxα, where ha Î k[x1, ..., xn].
A special kind of monomial ideal is the initial ideal of

an ideal I ≠ {0} for a fixed monomial ordering. It is the
ideal generated by the set of initial monomials (under
the specified ordering) of the polynomials of I: in (I) =
〈in(f) | fÎ I〉 . The monomials which do not lie in in(I)
are called standard monomials.
Definition 2.3 Fix a monomial ordering. A finite sub-

set G of an ideal I is a Gröbner basis if
in(I) = 〈in(g)|g ∈ G〉.
A Gröbner basis for an ideal may not be unique. If we

also require that for any two distinct elements g, g′ ∈ G,
no term of g’ is divisible by in(g), such a Gröbner basis
is called reduced and is unique for an ideal and a mono-
mial ordering, provided the coefficient of in(g) in g is 1
for each g ∈ G
2.3 Ideals of points
Given a set of points, it is often necessary to find all the
polynomials that vanish on it. Such a set of polynomials
forms an ideal called the ideal of points defined as
follows.
Definition 2.4 Let V = {p1, ..., pm}, where pi = (ai1, ...,

ain) Î kn. Then we set

I(V) = {f ∈ k[x1, . . . , xn]|f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V}.

Dimitrova et al. EURASIP Journal on Bioinformatics and Systems Biology 2011, 2011:1
http://bsb.eurasipjournals.com/content/2011/1/1

Page 9 of 13



It can be shown that I(V) is an ideal of k[x1, ..., xn]. It
is called the ideal of points in V .
2.4 The Gröbner fan of an ideal
A combinatorial structure that contains information
about the initial ideals of an ideal is the Gröbner fan of
an ideal. It is a polyhedral complex of cones, each corre-
sponding to an initial ideal, which, as follows from Defi-
nition 2.3, is in a one-to-one correspondence with the
marked reduced Gröbner bases (the initial term of each
generating polynomial being distinguished) of the ideal.
A brief introduction to the the Gröbner fan folllows. For
details see, for example [44].
A polynomial ideal has only a finite number of differ-

ent reduced Gröbner bases. Informally, the reason is
that most of the monomial orderings only differ in high
degree and the Buchberger algorithm for Gröbner basis
computation does not “see” the difference among them.
However, they may vary greatly in number of polyno-
mials and “shape”. In order to classify them, we first
present a convenient way to define monomial orderings
using matrices [56]. Again, we think of a polynomial in
k[x1, ..., xn] as a linear combination of monomials of the
form xα = xα1

1 · · · xαn
n over k, where a is the n-tuple expo-

nent α = (α1, . . . ,αn) ∈ Zn
≥0.

Definition 2.5 Let ω = (ω1, ..., ωn) be a vector with
real coefficients. We can define an ordering ≻ω the ele-
ments of Zn

≥0 by a ≻ω b if and only if a · ω >b · ω,
componentwise.
Definition 2.6 Let G = {g1, . . . , gr} be a marked

reduced Gröbner basis for an ideal I. Write each polyno-
mial of the basis as gi = xαi +

∑
β ci,βx

β where xαi is the
initial term in gi. The cone of G is
CG = {ω ∈ Rn

≥0 : αi · ω ≥ β · ω for all i,β with ci,β �= 0}
The collection of all the cones for a given ideal is the

Gröbner fan of that ideal. The cones are in bijection
with the marked reduced Gröbner bases of the ideal.
Since reducing a polynomial modulo an ideal I, as the
reverse engineering algorithm requires in Step 3, can
have at most as many outputs as the number of marked
reduced Gröbner bases, it follows that the Gröbner fan
contains information about all Gröbner bases (and thus
all monomial orderings) that need to be considered in
the process of model selection. There are algorithms
based on the Gröbner fan that enumerate all marked
reduced Gröbner bases of a polynomial ideal [45].

3 Reverse engineering of PPDSs
Suppose we have time series data from a gene regulatory
network on n genes represented by variables x1, ..., xn.
Let f = (f1, ... fn) be any polynomial system that fits the
data, generated using, for instance, Lagrange interpola-
tion, and suppose that variable xi appears in at least one
monomial (with a nonzero coefficient) of polynomial fj.

Then it follows that variable xi has effect on variable xj
whose behavior is determined by fj. The directed graph
on {x1, ..., xn} representing these dependencies is called
the dependency graph of f. For example, let
f = (f1, f2) ∈ F2

2[x1, x2] where

f1 = x1x2
f2 = x1 + 1

(3)

Then x1 depends on both x1 and x2, while x2 depends
only on x1.
While inferring the dependency graph from a PDS

model is straightforward, identifying that single model
may hardly be possible. There is a problem originating
from the algorithm proposed in [34]: finding all polyno-
mials that vanish on a set of points. This is equivalent
to computing the ideal of these points and computation
of an ideal of points boils down to intersection of ideals
of polynomials vanishing on one point. There is a well-
known consequence of the Buchberger algorithm, ori-
ginally presented in [57] MISSING, for their computa-
tion. The output of the algorithm is a Gröbner basis {g1,
..., gs} ⊂ k[x1, ..., xn] that generates the ideal of vanishing
polynomials: I = 〈g1, . . . , gs〉 =

∑s
i=1 higi, where hi Î k[x1,

..., xn]. The Gröbner basis, however, is not unique, as it
was discussed in 2.1, and its computation depends on
the choice of monomial ordering.
Example 3.1 Consider a network of 3 genes x1, x2, and

x3. Suppose we have the following time series of net-
work states in F3

3: s1 = (2, 1, 0), s2 = (1, 2, 0), s3 = (2, 1,
1), s4 = (0, 0, 1).
Depending on the selection of monomial ordering, the

algorithm of [34] will generate one of the two polyno-
mial models:

f1 = x2 − x3 f1 = −x1 − x3
f2 = −x2 + x3 or f2 = x1 + x3
f3 = x2 + x3 − 1 f3 = −x1 + x3 − 1

(4)

Notice that all three coordinate polynomials involve x3
but depending on the monomial ordering, they also con-
tain either x1 or x2. In fact, for the given time series s1,
..., s4, these are the only two distinct minimal (in the
sense defined in [34]) PDS models that the algorithm
generates. While it is not clear whether there is a
dependence on x1 or on x2, one can be confident that,
provided the data are representative of the network, x3
has a definite impact on all three genes. We expand on
this idea in the next section.
Clearly the monomial ordering selection affects not

only the dependency graph of the model but also its
dynamics which is represented by the model’s state
space. Let p = (1, 0, 0) F3

3. In Example 3.1, starting at
state p, the first model will transition to state (0, 0, 2),
while the second’s next state is (2, 1, 1). All coordinates
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of the output are different although they are generated
by minimal PDS models that fit the experimental time
series data. It is not clear how to select one out of, as it
is often the case with real data, hundreds of possibilities.
The main reason is that it is hard to relate monomial
ordering to biology in any meaningful way. The solution
we propose is instead of trying to single out one model,
to use all minimal models (possibly with different prob-
abilities) to generate the system dynamics. This means
allowing stochastic behavior which is consistent with the
experimental observations.
For Example 3.1, Algorithm 3.1 generates output F =

{f1, f2, f3} given in (5). Its state space consists of one con-
nected component (of size 27), and five fixed points, (0,
1, 1), (1, 1, 0), (2, 0, 1), (2, 1, 2), and (2, 2, 0), with stabi-
lities (probability that for a given run of the simulation
the point will be fixed) 0.12, 0.12, 0.13, 0.51, and 0.13,
respectively. Figure 3 shows the state space graph of (5).

f1 = {(x2 − x3, 0.491), (−x1 − x3, 0.509)}
f2 = {(−x2 + x3, 0.491), (x1 + x3, 0.509)}
f3 = {(x2 + x3 − 1, 0.491), (−x1 + x3 − 1, 0.509)}

(5)

Relative size of the Gröbner cones and interaction
strength. Using Algorithm 3.1 for reverse engineering of
PPDSs is based upon the following assumptions that
relate the network dependencies to the Gröbner fan of
the ideal of polynomials that vanish on the network data.

1. Minimal polynomials are an appropriate frame-
work for the modeling of gene regulatory networks.
The minimal polynomials are only a subset of all
polynomials that fit a given data set. In Example 3.1,
both f1 = x2 - x3 and f ′

1 = x2 − x3 − x21 − x1x2 fit the
data and can be coordinate polynomials for x1 but
the latter is not minimal since g = −x21 − x1x2 is
identically zero on the data and f ′

1 = f1 + g. In that
sense, g is not supported by the data and is mean-
ingless for the purpose of reverse engineering.
2. The strength of dependency of network node xi on
node xj on the scale from 0 to 1 is proportional to
the relative frequency with which xj appears in xi’s
minimal coordinate polynomials that fit the data. In
Example 3.1, both possible polynomials for f1 involve
x3 which means that the behavior of x1 cannot be
described without involving x3. It is reasonable then
to conclude that the strength of the dependency of
x1 on x3 is 1.
3. The strength of dependency of xi on xj is propor-
tional of the size of the portion of the Gröbner fan
that corresponds to those coordinate polynomials for
fi that involve xj.

Each point of the Gröbner fan corresponds to a
monomial ordering and all points within the same
Gröbner cone produce the same Gröbner basis and thus
the same minimal model. Typically, we do not know

Figure 3 The state spaces of PPDS (5).
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which monomial ordering(s) are more appropriate for a
particular network and the best we can do is consider
all of them and identify which ones are the most likely
to represent the network dependencies. If there are two
models, one corresponding to a larger portion of the
Gröbner fan than the other, this means that there are
more monomial orderings which produce the first
model.
In Example 3.1, the Gröbner fan is three-dimensional

since there are three variables and consists of two Gröb-
ner cones of equal sizes (volumes). Each one of the two
coordinate polynomials for f1, for instance, corresponds
to .5 of the total size of the Gröbner fan. Therefore,
under our assumption, the strength of dependency of x1
on x2 is .5 and the probability that x1 depends on itself
is also .5.

4 Reverse engineering the yeast cell cycle
Based on the data generated from the model presented
in [17] and given in Table 1, the reverse engineering
method we proposed generated the PPDS (6). For each
variable xi, the set fi consists of pairs of the form (F, p),
where F is a polynomial in F2[x1, ..., x11] and p is the
probability with which F is used to determine xi’s next
value at each iteration.

f1 ={(0, 1)}
f2 ={(x1x3x10 + x1 + x2x7 + x2x8 + x2x9, 0.064),

(x1x3 + x1x10 + x2x10 + x2, 0.436),

(x1x10 + x1x2 + x1 + x2x10 + x2, 0.5)}
f3 ={(x1x3 + x3x10 + x1x10 + x3 + x1, 0.5),

(x3x10 + x1x10 + x1x2 + x3, 0.5)}
f4 ={(x3, 1)}
f5 ={(x4x7x8 + x4x7x10 + x7x8x10 + x4x5x8

+ x4x5x10 + x5x8x10 + x4x7 + x7x8 + x7x10
+ x5x7 + x4x5 + x5x8 + x5x10 + x7 + x5, 1)}

f6 ={(x7x10 + x7x11 + x7 + x10x11 + x11, 1)}
f7 ={(x10x11 + x10 + x11, 1)}
f8 ={(x1x2x10 + x1x2 + x7x8 + x8x9 + x2x10 + x8, 0.212),

(x1x3x10 + x1x3 + x1x10 + x1 + x7x8 + x8x9 + x2x10 + x8, 0.256)

(x7x8 + x8x9 + x2x7 + x2x8 + x2x9 + x8 + x2, 0.532) }
f9 ={(x4x7x8 + x4x7x10 + x7x8x10 + x4x7 + x7x8

+ x7x10 + x7x9 + x4x9 + x8x9 + x6x7 + x9x10
+ x4x6 + x6x8 + x7 + x6x10 + x6x9 + x9 + x6, 1)}

f10 ={(x5x7x8 + x5x7x10 + x7x8 + x7x10 + x8x10
+ x5x8 + x8x9 + x5x10 + x7x11 + x9x10 + x8x11
+ x10x11 + x5x11 + x8 + x9x11 + x10 + x11, 1)}

f11 ={(x8x10 + x8 + x10, 1)}

(6)

Abbreviations
PDS: polynomial dynamical system; PPV: predictive value; PBN: probabilistic
Boolean networks; PPDS: probabilistic polynomial dynamical system; Se:
sensitivity.
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