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case study.
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1. Introduction

One objective of genetic regulatory modeling is to design
intervention strategies that affect the evolution of the gene
activity profile of the network. Such strategies can be useful
in identifying potential drug targets and treatment methods
to alter network evolution in some desirable manner. The
states of the network can be partitioned into two sets, desir-
able and undesirable, which correspond to functional cellular
states, such as proliferation and apoptosis [1]. In biology,
there are numerous examples where the (in)activation of
one gene or protein can lead to a certain cellular functional
state or phenotype. For instance, consider a stable cancer cell
line borrowed from [2]. Without intervention, the cell cycle
continues and cancerous cells proliferate with time. If the
goal of the intervention is to push the cells into apoptosis,
or programmed cell death, to stop the cell cycle one can
use the p53 gene. The p53 gene is the most well-known
tumor suppressor gene, encoding a protein that regulates
the expression of several genes such as Bax and Fas/APO-
1, which function to promote apoptosis [3, 4]. In cultured
cells, extensive experimental results indicate that when p53
is activated, for example, in response to radiation, it leads to

cell growth inhibition or cell death [5]. The p53 gene is also
used in gene therapy, where the target gene (p53 in this case)
is cloned into a viral vector. The modified virus serves as a
vehicle to transport the p53 gene into tumor cells to generate
intervention [6, 7].

As this and many other examples suggest, it is prudent
to use external variables to beneficially alter the evolution
of gene regulatory networks. The design of intervention
strategies that reduce the likelihood of states favorable to
metastasis in cancerous cells has been recently studied by the
systems biology community [2, 8]. In particular, regulatory
intervention has been studied in the context of probabilistic
Boolean networks (PBNs) [9]. These networks, which allow
the incorporation of uncertainty into the inter-gene rela-
tionships, are essentially probabilistic generalizations of the
standard Boolean networks introduced by Kauffman [10–
12]. In a PBN, gene values are selected from a finite set of
quantization levels. The values are updated synchronously
at each updating epoch according to regulatory functions.
The regulatory functions are allowed to change at time
points selected by a binary switching random variable. This
incorporates the effect of latent variables outside the model,
whose behaviors influence regulation within the model. In
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essence, the PBN is composed of a collection of networks;
between switches it acts like one of the constituent networks.
The PBN model also allows random perturbation of genes at
each updating instant.

Under appropriate assumptions, a Markov chain models
the dynamical behavior of a PBN [9, 13]. An optimal
intervention strategy is developed based on the associated
Markov chain. Methods have been proposed to devise
effective intervention strategies. A one-time intervention has
been designed based on first-passage times [14]. Dynamic
programming can also be used to design optimal finite-
horizon control policies [15]. Alternatively, Markov decision
processes can be employed to find stationary intervention
strategies that alter the steady-state distribution of the
state space [16]. Recently, model-free methods have been
introduced based on reinforcement learning [17] and mean
first-passage times [18] to reduce the likelihood of visiting
undesirable states in the long run.

Common to these approaches is a utility function that is
to be maximized in order to reduce the aggregated probabil-
ity of disease states. In reality, treatment options, for exam-
ple, chemotherapy, cause collateral damages. For instance,
consider a second example borrowed from [2]. A treatment
based on estrogen is often used by women after menopause
to alter their accelerated aging trend. The amount of estrogen
received during treatment should not exceed a threshold,
since an overdose may increase the chance of developing
breast and ovarian cancers. While this phenomenon is not
fully understood, it is conceivable that estrogen therapy
may have side effects on gene regulation. Estrogen generates
two types of complexes through binding to two classes of
receptors. The generated complexes are transported into the
nucleus to bind to the enhancer elements on the target
genes with the help of a coactivator. The coactivator is also
required for efficient transcriptional regulation by estrogen.
This function in cooperation with a coactivator acts like a
transcription factor, affecting target genes such as the PENK
gene [19]. Two types of receptors are competing for binding
to the estrogen received via treatment [20]. The first type
of complex binds DNA better but performs less efficiently
to bind the coactivator. On the other hand, the second
type of complex binds the coactivator better but performs
poorly when binding DNA. When the level of estrogen is
below a threshold, there is no competition for DNA binding.
Hence, the second type of complex binds DNA and activates
the downstream target gene PENK, with the help of its
coactivator. However, when the estrogen level is high, both
types of complex exist at high concentrations, and the second
type of complex binds the coactivator. Consequently, the
level of coactivator available to complex type one drops, so
the complex type two has a small chance to bind to DNA,
and cannot activate the target gene. If the PENK gene plays
a role in tumor suppression, for instance, then this could
explain why high levels of estrogen have a tumorigenic effect.
An appropriate treatment strategy mitigates this problem by
bounding the expected number of treatments received by a
patient and, as a consequence, limits the dose of estrogen.

Using constrained intervention methods, we seek an
effective regulatory treatment that reduces the likelihood

of visiting undesirable gene-activity profiles, that is, state,
in the long run while providing an upper bound on the
expected number of interventions a patient can receive.
Instead of introducing a single utility function whose
maximization reduces the likelihood of entering undesirable
states, we consider a situation where one type of utility is
maximized while keeping the other cost function below a
given threshold. Posed this way, the intervention problem
can be viewed as a constrained Markov decision process.

In our framework, a gene regulatory network is mod-
eled as a dynamical system in which decisions regarding
treatment are taken sequentially. We wish to design an
intervention strategy that selects treatments (actions) as a
function of time and available information. For a given
intervention strategy, the choice of treatments at different
decision epochs may depend on the whole observed history.
The choice of an intervention strategy will determine the
evolution of the state of an intervened biological system
in some probabilistic sense. The trajectories of the states
together with the choice of treatments determine the
expected utility in conjunction with the expected cost that
we encounter. Hence, the proposed method enables us
to design therapeutic intervention strategies by defining
problem dependent constraints. Although various forms of
constraints are plausible, hereafter, we focus on the expected
number of treatments.

We provide the necessary background and formulate the
problem of unconstrained intervention in a PBN as a Markov
decision process in Section 2. The constrained intervention
method is formulated in Section 3. As a numerical study,
in Section 4, we consider a network obtained from the
mammalian cell cycle with mutated phenotype. We design
a constrained intervention strategy to hinder cell growth in
the absence of growth factors, while keeping the expected
number of interventions bounded. We investigate how the
constrained intervention strategy performs in comparison to
the unconstrained policy.

2. Unconstrained Optimal Intervention in
Probabilistic Boolean Networks

A probabilistic Boolean network (PBN) consists of a
sequence V = {xi}ni=1 of n nodes, where xi ∈ {0, . . . ,d −
1}, and a sequence {fl}kl=1 of vector-valued functions called
predictor functions. In the framework of gene regulation,
each element xi represents the expression value of a gene.
It is common to mix the terminology by referring to xi as
the ith gene. Each vector-valued function fl = ( fl1, . . . , fln)
determines a constituent network of the PBN. The function
fli : {0, . . . ,dn − 1}n→{0, . . . ,dn − 1} is a predictor of gene i,
whenever network l is selected. The number of quantization
levels is denoted by d. At each updating epoch, a decision
is made whether to switch the constituent network. The
switching probability q is a system parameter. If the network
is not switched, then the PBN behaves like a fixed network
and synchronously updates the values of all the genes
according to the current predictor function. If the network
is switched, then a predictor function is randomly selected
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according to probability distribution {pl}kl=1. After selecting
the predictor function fl, the values of genes are updated
accordingly, that is, according to the network determined by
fl. We consider PBNs with perturbation, in which each gene
may change its value with a small perturbation probability ρ
at each time unit.

Two quantization levels have thus far been used in
practice. If d = 2 (binary), then the constituent networks
are Boolean networks with 0 or 1 meaning OFF or ON,
respectively. The case d = 3 (ternary) arises when we
consider a gene to be down-regulated (0), up-regulated (2),
or invariant (1). This situation commonly occurs with cDNA
microarrays, where a ratio is taken between the expression
values on the test channel (red) and the base channel (green).
In this paper, we will develop the methodology for d = 2, so
that gene values are either 0 or 1; however, the methodology
is applicable to any finite number of levels.

The gene-activity profile (GAP) is an n-digit binary
vector x(t) = (x1(t), . . . , xn(t)) giving the expression values
of the genes at time t, where xi(t) ∈ {0, . . . ,d − 1}. We
note that there is a natural bijection between the GAP x(t)
and its decimal representation, which takes values in W =
{0, 1, . . . ,dn − 1}.

In the presence of external controls, we suppose that
the PBN has m binary control inputs, {ci(t)}mi=1, which
specify the interventions on control genes g1, . . . , gm. A
control ci(t), which can take values 0 or 1 at each updating
epoch t, specifies the action on the control gene gi. The
decimal bijection of the control vector, ug1,...,gm(t) ∈ C =
{0, 1, . . . , 2m − 1}, describes the complete status of all the
control inputs. As in previous applications, we focus on a
single control gene g1, which we label by g, possessing the
control function ug(t) ∈ C = {0, 1}. The treatment alters the
status of the control gene g, which can be selected among all
the genes in the network. If the control at updating epoch t is
on, ug(t) = 1, then the state of the control gene g is toggled;
if ug(t) = 0, then the state of the control gene g remains
unchanged.

Brun et al. showed that the dynamic behavior of a PBN
can be modeled by a Markov chain [13]. In this case, system
evolution for a single control gene g is represented by a
stationary discrete-time equation:

z(t + 1) = f
(
z(t),ug(t),w(t)

)
, for t = 0, 1, . . . , (1)

where state z(t) is an element of the state-space S = {(ξ, s) :
ξ ∈ {1, . . . , k}∧ s ∈ {0, 1, . . . ,dn−1}}. The disturbance w(t)
is the manifestation of uncertainties in the PBN. It is assumed
that both the gene perturbation distribution and the network
switching distribution are independent and identical for all
time steps t. Originating from a state z1, the successor state
z2 is selected randomly within the set S according to the
transition probability pz1z2 (u):

pz1z2 (u)
Δ= P
(
z(t + 1) = z2 | z(t) = z1, ug(t) = u

)
, (2)

for all z1 and z2 in S, and for all u in C. Gene perturbation
insures that all the states in the Markov chain communicate
with one another. Hence, the finite-state Markov chain has a
unique steady-state distribution [21].

The problem of optimal intervention for PBNs is
formulated as an unconstrained Markov decision process
[16]. A reward-per-stage r(z1,u, z2) is associated to each
intervention in the system. In general, a reward-per-stage
could depend on the origin state z1, the successor state z2,
and the control input u. We assume that the reward-per-stage
is stationary and bounded for all z1, z2 in S, and u in C. We
define the average immediate reward in state z1, when control
u is selected, by

r
(
z1,u

) =
∑

z2∈S
pz1z2 (u)r

(
z1,u, z2

)
. (3)

We consider the discounted formulation of the expected
total reward. The discounting factor, α ∈ (0, 1), ensures
the convergence of the expected total reward over the long-
run [22]. In the case of cancer therapy, the discounting
factor emphasizes that obtaining treatment at an earlier stage
is favored over later stages. The normalized expected total
discounted reward, given policy πg , initial state i, and control
gene g, is denoted by

Jπg (i)

= (1− α) lim
N→∞

E

{
N−1∑

t=0
αtr
(
z(t),μg(i, t), z(t + 1)

) | z(0)= i

}

(4)

A policy πg = {µg(i, 0),µg(i, 1), . . .} is a sequence of decision
rules µg(i, t), for each updating epoch t acting on control
gene g, given that the initial state is i. In general, a decision
rule µg(i, t) at updating epoch t selects action ug(t) according
to the history of the system as well as the current state.
The history h(t) at the updating epoch t is composed of
the sequence of previous states and actions. If the history
h(t) is observed at the updating epoch t, then the decision
rule µg(i, t) determines the probability of selecting action u

conditioned on the history h(t) and the current state z(t).
We denote the set of all such policies by Πg , when gene g is
selected as the control gene. The set Πg(M) is the subset of
Markovian policies within the set of all policies Πg defined
above. A policy is Markovian if given the current state z(t)
the decision rule µg(i, t) = µg(t) is independent of all the
previous states and actions h(t), and selects action u with
probability µg(t,u | z(t)) at decision epoch t. We denote
the set of all stationary policies by Πg(S), where a stationary
policy for control gene g is an admissible intervention
strategy in Πg(M) of the form πg = {µg ,µg , . . .}. Here, µg
denotes a time invariant decision rule. A stationary policy
is also a deterministic policy if decision rule µg : S→C is
deterministic and time invariant for each updating epoch t.
The set of all deterministic policies is represented by Πg(D).

Frequently, the discounted reward is defined without
the normalizing constant (1 − α). This constant does not
change the method and the solution of the intervention
policy. However, using the normalizing constant has several
advantages. First, this prevents the total reward from growing
excessively for values of α close to one. Second, the use of the
normalization constant provides an interesting interpreta-
tion for the total cost in the constrained intervention design.
This will become clear in the later sections of the paper.
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The vector Jπg of normalized expected total discounted
rewards is called the value function. In an unconstrained
intervention problem, we seek an admissible intervention
strategy π∗g that maximizes the value function for each initial
state i, that is,

π∗g (i) = arg max
πg∈Πg

Jπg (i) ∀i ∈ S. (5)

It is known that an optimal intervention strategy exists
for the unconstrained discounted intervention problems,
and it is given by the fixed-point solution of the Bellman
optimality equation:

J∗
(
z1
) = max

u∈C

[

r
(
z1,u

)
+ α

∑

z2∈S
pz1z2 (u)J∗

(
z2
)
]

. (6)

Moreover, an optimal policy determined by the Bellman
optimality equation is deterministic, and independent of
the initial state i [22]. Standard dynamic programming
algorithms can be used to find a fixed-point of the Bellman
optimality equation.

3. Constrained Intervention in
Probabilistic Boolean Networks

Cancer therapy may include the use of chemotherapy,
radiation therapy, targeted gene therapy, and so forth. All of
these treatment options are directed at killing or eradicating
cancerous cells. Unfortunately, cancer treatments may also
damage healthy cells. This results in complications and
harmful side effects. It is therefore desirable to maintain the
side effects of a treatment to a minimum. This goal can
be achieved by enforcing an upper bound on the expected
number of treatments a patient may receive during ther-
apy. A deterministic intervention policy devised by solving
the unconstrained optimization (5) reduces the chance of
visiting undesirable states; however, this intervention policy
does not provide a way to constrain the frequency of
applying treatments within a prescribed intervention policy.
To address this shortcoming, we impose an appropriate
constraint on the optimization problem (5) by introducing
constrained intervention in PBNs.

For the same reasons articulated in Section 2, we consider
a discounted formulation to define both the objective
reward function and constraint cost function. To restrict the
frequency of applying intervention, we associate a cost-per-
stage c(z,u) to each state-action pair (z,u) in the constrained
formulation. The set of all possible state-action pairs is
denoted by K = {(z,u) : z ∈ S, u ∈ C}. A cost-
per-stage should be defined to appropriately reflect the
constraint. Here, we bound the discounted expected number
of interventions in the long run. Accordingly, the normalized
expected total discounted cost of the constraint, given policy
πg , initial state i, and control gene g is denoted by

Cπg (i) = (1− α) lim
N→∞

E

{N−1∑

t=0

αtc
(
z(t),μg(i, t) | z(0) = i

)
}

·
(7)

Having the constrained cost function defined this way and
the objective reward function as in (4), we can state the
constrained intervention problem in a PBN as

max
πg∈Πg

Jπg (i), such thatCπg (i) ≤ Ctotal, (8)

where Ctotal is the upper bound on the discounted expected
number of interventions in the long run, and i is the initial
state.

We wish to find an optimal intervention policy π∗g
within the set of admissible policies Πg (not just Markovian
policies) that maximizes the value function while satisfying
the constraint imposed on the discounted expected total
cost. Interventions using policy π∗g increase the time spent
in desirable states, while limiting the discounted expected
number of treatments. The intervention strategy is deter-
mined through the appropriate assignments of reward-per-
stage and cost-per-stage to each state-action pair.

Given an arbitrary policy πg and starting from initial
state i, the state trajectories and selected actions over time
are probabilistic. Our objective is to find the expectation
of the number of times that state-action pairs (z,u) ∈
K with active intervention decision, u = 1, occur over
the progression of the PBN. This value corresponds to the
expected number of treatments in an intervention policy. To
this end, we denote the probability that a state-action pair
(z,u) in the set of all possible state-action pairs K occurs at
updating epoch t as

Pπg
(
z(t) = z,ug(t) = u | z(0) = i

)· (9)

We further define the normalized discounted total expected
time spent in the state-action pair (z,u) in the long run as

fα
(
i,πg ; z,u

)

Δ= (1− α) lim
N→∞

N−1∑

t=0

αtPπg
(
z(t) = z,ug(t) = u | z(0) = i

)
,

(10)

for all (z,u) ∈K , where i is an initial state and πg is a policy
in Πg . The set

fα
(
i,πg

) = { fα
(
i,πg ; z,u

) | (z,u) ∈K
}

(11)

denotes a probability measure over the set of state-action
pairs K . The numbers of states and actions of a PBN
are finite, and the discounting factor α guarantees uniform
convergence of (10). The set fα(i,πg) for any initial state
i and policy πg is called an occupation measure [23]. The
occupation measure can be interpreted as the probability of
occupying state-action pairs (z,u) in the long run, given that
the PBN is initially in state i and policy πg is used throughout.

The normalized discounted reward function (4) can be
expressed as the expectation of the average immediate reward
r(z,u) over the probability distribution defined in (9):

Jπg (i) =(1− α) lim
N→∞

N−1∑

t=0

{

αt
∑

(z,u)∈K

[
r
(
z(t) = z,ug(t) = u

)

×Pπg
(
z(t)=z, ug(t)=u|z(0)= i

)]
}

.

(12)
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The normalized discounted reward function in (12) can be
equivalently expressed as

Jπg (i) =
∑

(z,u)∈K

{

(1− α) lim
N→∞

N−1∑

t=0

[
αtr
(
z(t) = z, ug(t) = u

)

× Pπg
(
z(t) = z, ug(t) = u | z(0) = i

)]
}

.

(13)

Using definition (10) and probability measure (11), we can
express the latest form of the normalized discounted reward
(13) as the expectation of the average immediate reward with
respect to the occupation measure:

Jπg (i) =
∑

(z,u)∈K
fα
(
i,πg ; z,u

)
r(z,u)· (14)

Similarly, we can express the normalized discounted objec-
tive cost corresponding to policy πg as the expectation of the
cost-per-stage with respect to the occupation measure:

Cπg (i) =
∑

(z,u)∈K
fα
(
i,πg ; z,u

)
c(z,u)· (15)

Using (14) and (15), we can rewrite the constrained opti-
mization problem (8) as

max
πg∈Πg

∑

(z,u)∈K
fα
(
i,πg ; z,u

)
r(z,u),

such that
∑

(z,u)∈K
fα
(
i,πg ; z,u

)
c(z,u) ≤ Ctotal·

(16)

It is evident that the constraint in (16) prevents the
discounted expected number of interventions in the long run
from exceeding the upper-bound Ctotal if we assign the cost-
per-stage for each state-action pair in K as

c(z,u) =
{

0, if u = 0, z ∈ S,

1, if u = 1, z ∈ S.
(17)

In other words, using the definition of cost-per-stage in (17),
the left side of the inequality constraint in (16) corresponds
to the total discounted expected number of times that state-
action pairs with active treatment, u = 1, occur under
control policy πg . Equivalently, we can interpret this as
the discounted frequency of applying treatments given a
therapeutic strategy.

Several solutions for the constrained optimization prob-
lem of (8) are presented in [24]. We next briefly present a
method to solve this constrained Markov decision process
using the equivalent problem formulation of (16). In [24], it
is shown that the set of stationary policies Πg(S) is complete.
In other words, if

LU =
{
fα
(
i,πg

) | πg ∈ Πg
}

(18)

denotes the set of all the occupation measures and

LU(S) =
{
fα
(
i,πg

) | πg ∈ Πg(S)
}

(19)

denotes the set of occupation measures generated by sta-
tionary policies only, then LU = LU(S). Further, let Qα(i) be
defined as the set of vectors x=(x(1, 1), x(1, 2), . . . , x(2n, 2m))
that satisfy

∑

(z,u)∈K
x(z,u)

(
1z= j − αpz j(u)

) = (1− α)1i= j ∀ j ∈ S,

x(z,u) ≥ 0 ∀(z,u) ∈K ,
(20)

where 1x is indicator function, equaling one if x is true. If
x ∈ Qα(i), then one can verify that

∑
(z,u)∈Kx(z,u) = 1 by

summing the first constraint on x in the definition of Qα(i)
over all j ∈ S. Hence, the elements of any x satisfying the
constraints in (20) constitute a probability measure on K .

It has been shown that LU(S) = LU(D), where LU(D) =
{ fα(i,πg) | πg ∈ Πg(D)} and LU(D) is the closed convex hull
of deterministic policies [24]. Moreover, the closed convex
hull of deterministic policies LU(D) is equal to the closed
polytope specified by Qα(i). Hence, from the definition in
(20) and the cost formulation (15), we can find an optimal
policy that satisfies (16) by solving the following linear
program:

max
x∈R|K|

∑

(z,u)∈K
x(z,u)r(z,u),

such that
∑

(z,u)∈K
x(z,u)

(
1z= j − αpz j(u)

) = (1− α)1i= j ∀ j ∈ S,

∑

(z,u)∈K
x(z,u)c(z,u) ≤ Ctotal,

x(z,u) ≥ 0 ∀(z,u) ∈K .
(21)

This linear program is called the primal problem.
In [24], it is shown that an optimal stationary policy

π∗g of the constrained optimization problem (16) exists if
and only if the primal problem (21) has a solution x∗ =
{x∗(z,u) | (z,u) ∈ K}. Moreover, an optimal solution of
(21) uniquely determines an optimal stationary policy π∗g .
An optimal stationary policy, π∗g , thus selects action u at state
z with probability:

π∗g (z,u) = x∗(z,u)
∑

u∈Cx∗(z,u)
· (22)

We should point out that the optimal policy devised by (22)
is not necessarily a deterministic policy, in contrast to a policy
that maximizes reward function (4) without limitations.

Depending on the utilized numerical method, the com-
putational complexity of finding a solution for the linear
program in (21) varies. It is known that the complexity of
the interior-point method increases polynomially with the
number of states in K , where the exponent of the complexity
polynomial is not large [25]. Moreover, it is known that
the number of iterations required for the numerical method
to converge is in the order of O(log(1/ε)), where ε is the
accuracy of the outcome of the numerical method. Here,
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the size of K increases exponentially with the number of
genes n and the number of controls m in the PBN model
with control. The goal, in the application of interest, is not
to model fine-grained molecular interactions among a host
of genes, but rather to model a limited number of genes,
typically with very coarse quantization, whose regulatory
activities are significantly related to a particular aspect of a
specific disease. Hence, the proposed method is easily up to
the task of handling the limited size networks with which we
are dealing.

4. Constrained Intervention in
aMammalian Cell-Cycle Network

In this section, we construct a PBN that is a probabilistic
version of the Boolean model for the mammalian cell
cycle regulation proposed in [26]. This PBN postulates the
mammalian cell cycle with a mutated phenotype. Our pro-
posed constrained intervention method is then applied with
various bounds on the frequency of applying treatments; the
therapeutic policy seeks to hinder cell growth in the absence
of growth factors.

During the late 1970s and early 1980s, yeast geneticists
identified the cell-cycle genes encoding for new classes of
molecules, including the cyclins (so-called because of their
cyclic pattern of activation) and their cyclin dependent
kinases (cdks) partners [26]. Our model is rooted in the work
of Fauré et al., who have recently derived and analyzed the
Boolean functions of the mammalian cell cycle [26]. The
authors have been able to quantitatively reproduce the main
known features of the wild-type biological system as well as
the consequences of several types of mutations. Mammalian
cell division is tightly controlled. In a growing mammal, the
cell division should coordinate with the overall growth of the
organism. This coordination is controlled via extra-cellular
signals. These signals indicate whether a cell should divide
or remain in a resting state. The positive signals, or growth
factors, instigate the activation of Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma
(Rb), and p27. Rb is a tumor-suppressor gene. This gene
is expressed in the absence of the cyclins, which inhibit Rb
by phosphorylation. Whenever p27 is present, Rb can be
expressed even in the presence of CycE or CycA. Gene p27 is
active in the absence of the cyclins. Whenever p27 is present,
it blocks the action of CycE or CycA. Hence, it stops the cell
cycle.

The preceding explanation represents the wild-type cell-
cycle model. Following one of the proposed mutations in
[26], we assume p27 is mutated and its logical rule is always
zero (OFF). In this cancerous scenario, p27 can never be
activated. This mutation introduces a situation where both
CycD and Rb might be inactive. As a result, in this mutated
phenotype, the cell cycles in the absence of any growth factor.
In other words, we consider the states in which both Rb
and CycD are down-regulated as “undesirable states,” when
p27 is mutated. Table 1 summarizes the mutated Boolean
functions.

Table 1: Mutated boolean functions of mammalian cell cycle.

Product Predictors

CycD Input

Rb (CycD∧ CycE∧ CycA∧ CycB)

E2F (Rb∧ CycA∧ CycB)

CycE (E2F∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1∧Ubc)) ∨ (CycA ∧ Rb ∧
Cdc20∧ (Cdh1∧Ubc))

Cdc20 CycB

Cdh1 (CycA∧ CycB)∨ (Cdc20)

Ubc (Cdh1)∨ (Cdh1∧Ubc∧ (Cdc20∨ CycA∨ CycB))

CycB (Cdc20∧ Cdh1)

The Boolean functions in Table 1 are used to construct
the PBN model for the cell cycle. To this end, we assume
that the extra-cellular signal to the cell-cycle model is a latent
variable. The growth factor is not part of the cell, and its
value is determined by the surrounding cells. The expression
of CycD changes independently of the cell’s content and
reflects the state of the growth factor. Depending on the
expression status of CycD, we obtain two constituent Boolean
networks for the PBN. The first constituent Boolean network
is determined from Table 1 when the value of CycD is equal
to zero. Similarly, the second constituent Boolean network
is determined by setting the variable of CycD to one. To
completely define the PBN, the switching probability, the
perturbation probability, and the probability of selecting
each constituent Boolean network have to be specified. We
assume that these are known. Here, we set the switching
probability and the perturbation probabilities equal to 0.01
and 0.001, respectively, and the two constituent Boolean
networks are equally likely.

According to Table 1, the mutated cell-cycle’s PBN con-
sists of nine genes: CycD, Rb, E2F, CycE, CycA, Cdc 20, Cdh
1, UbcH 10, and CycB. The above order of genes is used
in the binary representation of the states, with CycD as the
most significant bit and CycB as the least significant bit. This
order of genes in the states facilitates the presentation of our
results and does not affect the computed control policies.
Here, the set S = {0, . . . , 511} denotes the decimal bijection
of gene-activity profiles when the above gene order is used
for presentation

Preventing the states with simultaneously down-re-
gulated CycD and Rb as our objective, we apply the
constrained intervention method described in Section 3 to
the constructed PBN with various bounds on the frequency
of applying control in a policy. We only consider a single
control, u ∈ C = {0, 1}. If the control is high, u = 1, then the
state of the control gene is reversed; if u = 0, then the state of
the control gene remains unchanged. The control gene can
be any of the genes in the model except CycD.

We assume that the reward of the states with down-
regulated Rb and CycD is lower than those for the states
in which these two genes are not simultaneously down-
regulated. We also consider the cost of applying a control
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Figure 1: The steady-state probability of gene-activity profile of
the PBN associated with the mammalian cell-cycle network before
intervention. The vertical line separates the undesirable gene-
activity profiles from the desirable ones.

action, which reduces the reward of each state. We postulate
the following rate-of-reward function:

r(z,u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

10, if u = 0, (CycD, Rb) /= (0, 0) in z,

1, if u = 0, (CycD, Rb) /= (0, 0) in z,

9, if u = 1, (CycD, Rb) /= (0, 0) in z,

0, if u = 1, (CycD, Rb) /= (0, 0) in z.

(23)

We select an arbitrary rate of reward; however, the reward
and control cost are selected so that applying the control to
prevent the undesirable states is preferable in comparison to
not applying control and remaining in an undesirable state.
In practice, the reward values have to capture the benefits
and costs of the intervention and the relative preference
of the states. They have to be set in conjunction with
physicians according to their clinical judgement. Although
this is not feasible within the domain of current medical
practice, we do believe that such an approach will become
increasingly mainstream once engineering approaches are
demonstrated to yield significant benefits in translational
medicine. Assuming the preceding rate-of-reward function,
we can compute control policies for the PBN associated to
the cell-cycle network according to various constraints.

Figure 1 depicts the steady-state distribution of the gene-
activity profile when there is no intervention. Per Figure 1,
in this PBN, the aggregated probability of the gene-activity
profiles with simultaneously down-regulated CycD and Rb
is close to 0.2. In other words, the model predicts that the
mutated cell-cycle will be in the cancerous gene-activity
profiles 0 to 127 nearly 20% of its time in the long run.

We define ΔP to be the percentage change in the
aggregated probability of undesirable gene-activity profiles
with simultaneously down-regulated CycD and Rb with
and without intervention. As a performance measure, ΔP
indicates the percentage of the reduction in the likelihood of
cancerous situations in the long run.
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Figure 2: The steady-state probability of gene-activity profile of
the PBN associated with the mammalian cell-cycle network after
intervention using Rb as the control gene, when the frequency of
applying control is unconstrained, Ctotal = 1.0. The vertical line
separates the undesirable gene-activity profiles from the desirable
ones.
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Figure 3: The steady-state probability of gene-activity profile of
the PBN associated with the mammalian cell-cycle network after
intervention using Rb as the control gene, when the frequency of
applying control is upper bounded by Ctotal = 0.1. The vertical line
separates the undesirable gene-activity profiles from the desirable
ones.

If we assume that we can alter the expression level of
any gene in the network as a therapeutic method, then it
is natural to ask which gene should be used to alter the
behavior of the model. To this end, we find a constrained
intervention policy for each gene in the network using the
intervention method explained in Section 3, while limiting
the expected number of times a control can be applied. First,
we assume that the PBN’s initial state is the undesirable
gene-activity profile with the highest probability in the
steady-state distribution of gene-activity profiles prior to
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Figure 4: The steady-state probability of gene-activity profile of
the PBN associated with the mammalian cell-cycle network after
intervention using E2F as the control gene, when the frequency of
applying control is is unconstrained, Ctotal = 1.0. The vertical line
separates the undesirable gene-activity profiles from the desirable
ones.
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Figure 5: The steady-state probability of gene-activity profile of
the PBN associated with the mammalian cell-cycle network after
intervention using E2F as the control gene, when the frequency of
applying control upper bounded by Ctotal = 0.1. The vertical line
separates the undesirable gene-activity profiles from the desirable
ones.

intervention. Table 2 lists the value of ΔP corresponding to
each gene in the network. Here, we vary the upper bound
on the frequency of applying intervention and find the
corresponding constrained policies.

Among all the genes, Rb offers the best performance
when control can be applied without any constraint, based
strictly on maximization of the reward function, Ctotal = 1.
After applying the unconstrained control policy designed
for Rb, the aggregated probability of undesirable gene-
activity profiles is significantly altered (see Figure 2). To

avoid the undesirable gene-activity profiles, we utilize the
intervention strategy devised by the proposed method in
Section 3 for the case when there is no bound on the
expected number of treatments. In this scenario, let us
assume that the gene-activity profile at a decision epoch
indicates that CycD = 0, Rb = 1, E2F = 1, CycE =
1, CycA = 0, Cdc20 = 0, Cdh1 = 1, UbcH10 = 0, and
CycB = 0. The devised stationary intervention strategy,
which is a mapping from the gene-activity profile to the
action set C, indicates that, for the observed gene-activity
profile, the value of control gene Rb should be toggled
with probability one. Consequently, we should use an
appropriate inhibitor to forcefully down regulate the control
gene Rb. Hence, the gene-activity profile would be forced
from (0, 0, 1, 1, 0, 0, 1, 0, 0) to (0, 1, 1, 1, 0, 0, 1, 0, 0) after this
intervention. Although the techniques to implement such
a policy, that is, effectively altering the expression of gene
Rb, using its enhancers and inhibitors, may not be fully
understood within the domain of current medical practice,
almost surely these techniques will have detrimental side
effects. The constrained stationary intervention designed by
the proposed procedure enables us to restrict the expected
number of such interventions a patient may receive during
therapy. Hence, we could accordingly adjust our intervention
strategy when the side effects of drugs effecting the regulation
of gene Rb are known.

Figure 3 indicates that by using a constrained stationary
intervention policy for the control gene Rb we can reduce
the aggregated probability of the undesirable states to less
than 12%, while restricting the number of interventions to
at most 10%. We could translate this to restrict the dose
of prescribed drugs once knowledge of their side effects is
available. If we only wish to limit the expected number of
applied interventions to less than 20%, then we can reduce
the chance of the cancerous gene-activity profiles by 98%.

According to Table 2, intervention policies based on gene
E2F performs almost as well as Rb when the constraint is
not too tight, Ctotal ≥ 0.2. This suggests that, given the side
effects of treatments, we may need to consider alternative
control genes. The steady-state probability distributions of
gene-activity profiles after intervention based on E2F are
presented in Figures 4 and 5.

Comparing Figures 2 and 4, one can observe that
although the final performances of intervening based on
these two genes are close, the probability mass of the
most probable gene-activity profiles after intervention with
Rb differs from the one in E2F-based intervention. This
observation suggests that one should utilize the systematic
analysis along with experimental studies to obtain more
effective lever points.

The results of Table 2 indicate that some genes are more
sensitive to the bound on the frequency of control. Relaxing
the constraint will not improve the result of intervention
when the gene UbcH10 is selected as the control gene. It is
simply not an effective lever point. Genes CycB and Cdc20
perform relatively well for tightly constrained intervention
policies but relaxing the limitation on the expected number
of treatments does not significantly improve the performance
of the policies based on these genes.
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Table 2: The ΔP for the intervention strategy based on various control genes and various constraint bounds.

Control gene
Ctotal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rb 61.96 98.32 98.33 98.33 98.33 98.33 98.34 98.34 98.34 98.34

E2F 57.43 97.36 98.00 98.00 98.00 98.01 98.01 98.02 98.02 98.02

CycE 28.37 28.41 28.41 28.44 28.44 28.46 28.46 28.47 28.49 28.51

CycA 16.56 16.59 16.60 16.61 16.62 16.64 16.65 16.65 16.69 16.69

Cdc20 39.15 41.44 41.47 41.48 41.48 41.50 41.51 41.52 41.53 41.61

Cdh1 27.55 40.58 41.51 41.56 41.56 41.57 41.62 41.62 61.63 41.65

UbcH10 6.49 6.50 6.52 6.56 6.57 6.59 6.61 6.64 6.66 6.69

CycB 39.33 41.85 41.86 41.89 41.91 41.92 41.92 41.96 41.99 41.99

Furthermore, if we do not assume that the PBN’s
initial state is the undesirable gene-activity profile with the
highest probability in the steady-state distribution of gene-
activity profiles prior to intervention but instead initialize
the PBN from an arbitrary undesirable gene-activity profile,
we observe that the policies are robust to the initial state
unless the constraint is too tight. For Ctotal ≥ 0.2, the values
of ΔP do not alter significantly; the performance of the
intervention policy varies more for different initial gene-
activity profiles when the constraint is tight, Ctotal = 0.1.

5. Conclusion

We have formulated the constrained intervention method
in probabilistic Boolean networks and demonstrated that
one can reduce the likelihood of a subset of undesirable
states while bounding the expected number of interventions
in a therapeutic strategy using the proposed method. We
have considered a mutated mammalian cell-cycle network
in which the cell growth does not stop in the absence
of growth factors. We have then utilized the proposed
intervention method to design constrained intervention
policies to influence the dynamics of the PBN constructed for
the mutated mammalian cell cycle. The goal of intervention
is to reduce the chance of undesirable cell proliferation in
the long run, while maintaining a bound on the expected
number of interventions. The presented numerical studies
strongly suggest that constrained intervention can effectively
alter the dynamics of the cell-cycle model. Various control
genes can be considered given different constraints. The most
effective control gene may vary depending on the restrictions
imposed on the intervention policies.
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