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The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number
of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue.
Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the
deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking
phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-
dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so
that natural questions arise as to the degree of correlation and themanner in which lack of correlation impacts error estimation.We
demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe
that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on
error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We
consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and
real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-
out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection,
(2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison
purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set
than with either feature selection or using all features, with the better correlation between the latter two showing no general trend,
but differing for different models.

Copyright © 2007 Blaise Hanczar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The validity of a classifier model, the designed classifier, and
prediction error depends upon the relationship between the
estimated and true errors of the classifier. Model validity is
different from classifier goodness. A good classifier is one
with small error, but this error is unknown when a classi-
fier is designed and its error is estimated from sample data.
In this case, its performance must be judged from the esti-
mated error. Since the error estimate characterizes our un-
derstanding of the predicted classifier performance on future
observations and since we do not know the true error, model
validity relates to the design process as a whole. What is the
relationship between the estimated and true errors resulting
from applying the classification and error-estimation rules to
the feature-label distribution when using samples of a given

size? Since classifier design is based upon random samples,
the classifier is a random function and both the true and es-
timated errors are random variables, depending on the sam-
ple. Hence, we are concerned with the estimation of one ran-
dom variable, the true error, by another random variable, the
estimated error. Naturally, we would like the true and esti-
mated errors to be strongly correlated. In this paper, using
a number of feature-label models, classification rules, fea-
ture selection procedures, and error-estimation methods, we
demonstrate that when there is high dimensionality, mean-
ing a large number of potential features and a small sample,
one should not expect significant correlation between the
true and estimated errors. This conclusion has serious ram-
ifications in the domain of high-throughput genomic clas-
sification, such as gene expression or SNP classification. For
instance, with gene-expression microarrays, the number of
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potential features (gene expressions) is usually in the tens of
thousands and the number of sample points (microarrays) is
often under one hundred. The relationship between the two
errors depends on the feature-label distribution, the classi-
fication rule, the error-estimation procedure, and the sam-
ple size. According to the usual design protocol, a sample S
of a given size is drawn from a feature-label distribution, a
classification rule is applied to the sample to design a classi-
fier, and the classifier error is estimated from the sample data
by an error-estimation procedure. Within this general proto-
col, there are two standard issues to address. First, should the
sample be split into training and test data? Since our inter-
est is in small samples, we only consider the case where the
same data is used for training and testing. The second issue
is whether the feature set for the classifier is known ahead of
time or it has to be chosen by a feature-selection algorithm.
Since we are interested in high dimensionality, our focus is on
the case where there is feature selection; nonetheless, in order
to accent the effect of the feature-selection paradigm on the
correlation between the estimated and true errors, for com-
parison purposes, we will also consider the situation where
the feature set is known beforehand.

Keeping in mind that the feature-selection algorithm
is part of the classification rule, we have the model
M(F,Ω,Λ,Ξ,D,d,n), where F is the feature-label distribu-
tion, Ω is the feature selection part of the classification rule,
Λ is the classifier construction part of the classification rule,
Ξ is the error-estimation procedure, D is the total number
of available features, d is the number of features to be used
as variables for the designed classifier, and n is the sample
size. As an example, F is composed of two class-conditional
Gaussian distributions over some number D of variables, Λ
is linear-discriminant analysis,Ω is t-test feature selection, Ξ
is leave-one-out cross-validation, d = 5 features, and n = 50
data points. In this model, feature selection is accomplished
without reference to the classifier construction. If instead we
letΩ be sequential forward selection, then it is accomplished
in conjunction with classifier construction, and is referred to
as a wrapper method. We will denote the designed classifier
by ψn, where we recognize that ψn is a random function de-
pending on the random sample.

The correlation between the true and estimated errors re-
lates to the joint distribution of the random vector (εtru, εest),
whose component random variables are the true error, εtru,
and the estimated error, εest, of the designed classifier. This
distribution is a function of the model M(F,Ω,Λ,Ξ,D,d,n).
A realization of the random vector (εtru, εest) occurs each time
a sample is drawn from the feature-label distribution and a
classifier is designed from the sample. In effect, we are con-
sidering the linear regression model

μεtru|εest = aεest + b, (1)

where μεtru|εest is the conditional mean of εtru, given εest. The
least-squares estimate of the regression coefficient a is given
by

â = σ̂ tru
σ̂est

ρ̂, (2)

where σ̂ tru, σ̂est, and ρ̂ are the sample-based estimates of the
standard deviation σ tru of εtru, the standard deviation σest of
εest, and the correlation coefficient ρ for εtru and εest, respec-
tively, where we assume that σ̂est �=0. In our experiments, we
will see that â < 1. The closer â is to 1, the stronger the re-
gression, the closer ρ̂ is to 1, the better the regression. As will
be seen in our experiments (see figure C1 on the compan-
ion website at gsp.tamu.edu/Publications/error fs/), it needs
not be the case that σ̂ tru/σ̂est ≤ 1. Here, one might think of
a pathological case: the resubstitution estimate for nearest-
neighbor classification is always 0.

We will observe that, with feature selection, ρ̂ will typi-
cally be very small, so that â ≈ 0 and the regression line is
close to being horizontal: there is negligible correlation and
regression between the true and estimated errors. When the
feature set is known, there will be greater correlation between
the true and estimated errors, and â, while not large, will be
significantly greater than zero. In the case of feature selec-
tion, this is a strong limiting result and brings into question
the efficacy of the classification methodology, in particular,
as it pertains to microarray-based classification, which usu-
ally involves extremely large sets of potential features.

While our simulations will show that there tends to be
much less correlation between the true and estimated errors
when using feature selection than when there is a known fea-
ture set, we must be careful about attributing responsibility
for lack of correlation. In the absence of being given a fea-
ture set, feature selection is employed to mitigate overfitting
the data and avoid falling prey to the peaking phenomenon,
which refers to increasing classifier error when using too
many features [1–3]. Feature selection is necessary and the
result is decorrelation of the true and estimated errors; how-
ever, does the feature-selection process cause the decreased
correlation or does it result from having a large number of
features to begin with? To address this issue, in the absence of
being given a feature set, we will consider both feature selec-
tion and using the full set of given features for classification.
While the latter approach is not realistic, the comparison will
help reveal the effect of the feature-selection procedure itself.
In all, we will consider three scenarios: (1) feature selection,
(2) known feature set, and (3) all features, the first one being
the one of practical interest. We will observe that the true and
estimated errors tend to be much more correlated in the case
of a known feature set than with either feature selection or
using all features, with the better correlation between the lat-
ter two showing no general trend, but differing for different
models.

This is not the first time that concerns have been raised
regarding the microarray classification paradigm. These con-
cerns go back to practically the outset of the expression-based
classification using microarray data [4]. Of particular rele-
vance to the present paper are problems relating to small-
sample error estimation. A basic concern is the deleterious
effect of cross-validation variance on error-estimation accu-
racy [5], and specific concern has been raised as to the even
worse performance of cross-validation when there is fea-
ture selection [6, 7]. Whereas the preceding studies focus on
the increased variance of the deviation distribution between
the estimated and true errors, here we utilize regression and
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a decomposition of that variance to show that it is the decor-
relation of the estimated and true errors in the case of feature
selection that is the root of the problem.

Whereas here we focus on correlation and regression be-
tween the true and estimated errors, we note that various
problems with error estimation and feature selection have
been addressed in the context of high dimensionality and
small samples. These include the effect of error estimation
on gene ranking [8, 9], the effect of error estimation on fea-
ture selection [10], the effect of error estimation on cross-
validation error estimation [6, 7], the impact of ties result-
ing from counting-based error estimators on feature selec-
tion algorithms [11], and the overall ability of feature selec-
tion to find good features sets [12]. With papers addressing
single issues relating to error estimation and feature selection
in small-sample settings, there have been a number of pa-
pers critiquing general statistical and methodological prob-
lems [13–19].

2. ERROR ESTIMATION

A classification task consists of predicting the value of a label
Y from a feature vector X = (X1, . . . ,XD). Consider a two-
class problem with a D-dimensional input space defined by
the feature-label distribution F. A classifier is a function ψ :
RD→{0, 1} and its true-error rate is given by the expectation
ε[ψ] = E[|Y − ψ(X)|], taken relative to F. In practice, F is
unknown and a classifier ψn is built, via a classification rule
from a training sample Sn containing n examples drawn from
F. The training sample is set of n independent pairs (feature
vector, label), Sn = {(X1,Y1), . . . , (Xn,Yn)}. Assuming there
is no feature selection, relative to the model M(F,Λ,Ξ,D,n),
the true error of ψn is given by

εtru = ε
[

ψn

] = ε
[

Λ
(

Sn
)] = E

[∣

∣Y −Λ
(

Sn
)

(X)
∣

∣

]

. (3)

With feature selection, the model is of the form M(F,Λ,
Ω,Ξ,D,d,n) and (with feature selection being part of the
classification rule), the true error takes the form

εtru = ε
[

ψn

] = ε
[

(Λ,Ω)
(

Sn
)] = E

(∣

∣Y − (Λ,Ω)
(

Sn
)

(X)
∣

∣

)

.
(4)

Computing the true error requires the feature-label distri-
bution F. Since F is not available in practice, we compute
only an estimate of the error. For small samples, this estimate
must be done on the training data. Among the popular esti-
mation rules are leave-one-out cross-validation, k-fold cross-
validation, and bootstrap.

Cross-validation estimation is based on an iterative algo-
rithm that partitions the training sample into k example sub-
sets, Si. At each iteration i, the ith subset is left out of classi-
fier construction and used as a testing subset. The final k-fold
cross-validation estimate is the mean of the errors obtained
on all of the testing subsets:

εcv = 1
n

k
∑

i=1

n/k
∑

j=1

∣

∣

∣

∣
Yi
j − (Λ,Ω)

(

Sn − Si
)(

Xi
j

)

∣

∣

∣

∣
, (5)

where (Xi
j ,Y

i
j) is an example in the ith subset. Cross-vali-

dation, although typically not too biased, suffers from high
variance when sample sizes are small. To try to reduce the
variance, one can repeat the procedure several times and av-
erage the results. The leave-one-out estimator, εloo, is a spe-
cial case of cross-validation where the number of subsets
equals the number of examples, k = n. This estimator is ap-
proximately unbiased but has a high variance.

The 0.632 bootstrap estimator is based on resampling. A
bootstrap sample S∗n consists of n equally likely draws with
replacement from Sn. At each iteration, a bootstrap sample is
generated and used as a training sample. The examples not
selected are used as a test sample. The bootstrap zero estima-
tor is the average of the test-sample errors:

εb0 =
∑ B

b=1
(∑ nb

i=1
∣

∣Y−bi − (Λ,Ω)(S∗bn
)(

X−bi
)∣

∣

)

∑ B
b=1nb

, (6)

where the examples {(X−bi ,Y−bi ), i = 1, . . . ,nb} do not be-
long to the bth bootstrap sample. The 0.632 bootstrap esti-
mator is a weighted sum of the resubstitution error and the
bootstrap zero error,

εb632 = (1− 0.632)εresub + 0.632εb0 (7)

the resubstitution error, εresub, being the error of the classifier
on the training data. The 0.632 bootstrap estimator is known
to have a lower variance than cross-validation but can pos-
sess different amounts of bias, depending on the classifica-
tion rule and feature-label distribution. For instance, it can
be strongly optimistically biased when using the CART clas-
sification rule.

3. PRECISION OF THE ERROR ESTIMATION

The precision of an error estimator relates to the difference
between the true and estimated errors, and we require a
probabilistic measure of this difference. Here we use the root-
mean-square error (square root of the expectation of the
squared difference),

RMS = RMS(F,Ω,Λ,Ξ,D,d,n) =
√

E
[
∣

∣εest − εtru
∣

∣

2
]

.

(8)

It is helpful to understand the RMS in terms of the devia-
tion distribution, εest − εtru. The RMS can be decomposed
into the bias, Bias[εest] = E[εest − εtru], of the error esti-
mator relative to the true error, and the deviation variance,
Vardev[εest] = Var[εest − εtru], namely,

RMS =
√

Vardev
[

εest
]

+ Bias
[

εest
]2
. (9)

Moreover, the deviation variance can be further decom-
posed into

Vardev
[

εest
] = σ2est + σ2tru − 2ρσestσ tru. (10)
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This relation is demonstrated in the following manner:

Vardev
[

εest
] = Var

[

εest − εtru
]

= E
[

(
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[
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])2
]

= E
[

(
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[
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])2
]

+ E
[

(
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[

εtru
])2
]

− 2E
[(

εest − E
[
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])(
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[

εtru
])]

= Var
[

εest
]

+ Var
[

εtru
]− 2cov

(

εest, εtru
)

= σ2est + σ2tru − 2ρσestσ tru.
(11)

Large samples tend to provide good approximations of
the feature-label distribution, and therefore their differences
tend not to have a large impact on the corresponding de-
signed classifiers. The stability of these classifiers across dif-
ferent samples means that the variance of the true error is
low, so that σ2tru ≈ 0. If the classification rule is consistent,
then the expected difference between the error of the de-
signed classifier and the Bayes error tends to 0. Moreover,
popular error estimates tend to be precise for large samples.
The variance caused by random sampling decreases with in-
creasing sample size. Therefore, for a large sample, we have
σ2est ≈ 0, so that Vardev[εest] ≈ 0 for any value of ρ, and the
correlation between the true and estimated errors is inconse-
quential. The situation is starkly different for small samples.
Different samples typically yield very different classifiers pos-
sessing widely varying errors. For these, σ2tru is not small, and
σ2est can be substantially larger, depending on the error esti-
mator. If σ2tru and σ2est are large, then the correlation plays an
important role. For instance, if ρ = 1, then

Vardev
[

εest
] ≈ (σest − σ tru

)2. (12)

But if ρ ≈ 0, then

Vardev
[

εest
] ≈ σ2est + σ2tru. (13)

This is a substantial difference when σ2tru and σ2est are not
small. As we will see, small-sample problems with feature se-
lection produce high variance and low correlation between
the true and estimated errors.

4. SIMULATION STUDY

The objective of our simulations is to compare the true
and estimated errors in several conditions: low dimen-
sional, high-dimensional without feature selection, and
high-dimensional with feature selection. These correspond
to the three scenarios discussed in the introduction. We have
performed three kinds of experiments:

• No feature selection (ns): the data contain a large num-
ber of features and no feature selection is performed.

• Feature preselection (ps): a small feature set is selected
before the learning process. The selection is not data-
driven and the classification design is performed on a
low-dimensional data set.

• A feature selection (fs): a feature selection is performed
using the data. The selection is included in the learning
process.

Our simulation study is based two kinds of data: syn-
thetic data generated from Gaussian models and patient data
from two microarray studies, breast cancer, and lung cancer.

4.1. Experimental design

Our simulation study uses the following protocol when using
feature selection:

(1) a training set Str and test set Sts are generated. For the
synthetic data, n examples are created for the training
set and 10000 examples for the test set. For the mi-
croarray data, the examples are separated into training
and test sets with 50 examples for the training set and
the remaining for the test set;

(2) a feature-selection method is applied on the training
set to find a feature subsetΩd(Str), where d is the num-
ber of selected features chosen from the originalD fea-
tures;

(3) a classification rule is used on the training set to build
a classifier (Λ,Ωd)(Str);

(4) the true classification error rate is computed using the
test set, εtru = (1/10000)

∑

i∈Sts|Y ts
i −(Λ,Ωd)(Str)(Xts

i )|;
(5) three estimates of the error rate are computed from

Str using the three estimators: leave-one-out, cross-
validation, and 0.632 bootstrap.

This procedure is repeated 10 000 times. We consider
three feature-selection methods: t-test, relief, and mutual
information. And we consider five classification rules: 3-
nearest-neighbor (3NN), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), linear support vec-
tor machine (SVM), and decision trees (CART). For cross-
validation, we use 5 runs of 5-fold cross-validation and for
0.632 bootstrap, we do 100 replications.

In the case of feature preselection, a subset of d features
is randomly selected before this process, step (2) is omitted,
and d � D. In the case of no feature selection, step (2) is
omitted and d = D. Also in the case of no feature selection,
we do not consider the uncorrelated model. This is because
the independence of the features in the uncorrelated Gaus-
sian model suppresses the peaking phenomenon and yields
errors very close to 0 with the given variances. This problem
could be avoided by increasing the variances, but then the
feature-selection procedure would have to yield very high er-
rors (near 0.5) to obtain significant errors with uncorrelated
features. The key point is that we cannot compare the feature
selection and no feature selection procedures using the same
uncorrelatedmodel, and comparison would not bemeaning-
ful if we compared them with different uncorrelated models.
Since the no feature selection scenario is not used in practice
and included only for comparison purposes, we omit it for
the uncorrelated models.

4.2. Simulations based on synthetic data

The synthetic data are generated from two-class Gaussian
models. The classes are equally likely and the class-condi-
tional densities are defined by N(μ0, σ0Σ) and N(μ1, σ1Σ).

The mean of the first class is at the origin μ0 = �0 and the
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Table 1: Parameters of the experiments.

Model Features σ n D d Feat. select. Classif. rule Error estimation

Linear Uncorrelated 0.2 50 200 5 No selection LDA Resubstitution

Nonlinear ρ = 0 to 100 400 10 t-test QDA Leave-one-out

Correlated 5 20 Relief 3NN 5× 5-fold cross-valid

ρ = 0.5 Mutual information SVM 0.632 bootstrap

Breast cancer data set 50 2000 10 t-test LDA Resubstitution

Lung cancer data set 20 Relief 3NN Leave-one-out

30 Mutual information SVM 5× 5-fold cross-valid

40 CART 0.632 bootstrap

mean of the second is located at μ1 =
→
A= [a0, . . . , aD], where

the ai are drawn from a beta distribution, β(2, 2). Inside a
class, all features possess common variance. We consider two
structuresΣ for the covariancematrix. The first is the identity
Σ = I, in which the features are uncorrelated and the class-
conditional densities are spherical Gaussian. The second is a
block matrix in which the features are equally divided into 10
blocks. Features from different groups are uncorrelated and
every two features within the same group possess a common
correlation coefficient ρ. In the linear models, the variance
and covariance matrices of the two classes are equal, σ0 = σ1,
and the Bayes classifier is a hyperplane perpendicular. In the
nonlinear models, the variance and covariance matrices are
different, with σ0 = σ1/

√
2. The different values of the pa-

rameters can be found in Table 1. Our basic set of synthetic
data-based simulations consists of 60 experiments across 15
models. These are listed in Table C1 on the companion web-
site, as experiments 1 through 60. The results about no fea-
ture selection experiments can be found on Table C7 on the
companion website.

When there is a feature preselection, μ1 =
→
A= [a0, . . . , ad],

the d features are randomly chosen from the original D fea-
tures. As opposed to the feature-selection case, the selec-
tion is done before the learning process and is not data-
driven. There is no absolute way to compare the true-error
and estimated-error variances between experiments with fea-
ture selection and preselection. However, this is not impor-
tant because our interest is in comparing the regressions and
correlations.

4.3. Simulations based onmicroarray data

The microarray data come from two published studies, one
on breast cancer [20] and the other on lung cancer [21]. The
breast-cancer data set contains 295 patients, 115 belonging
to the good-prognosis class, and 180 belonging to the poor-
prognosis class. The lung-cancer data set contains 203 tumor
samples, 139 being adenocarcinoma, and 64 being of some
other type of tumor. We have reduced the two data sets to a
selection of the 2000 genes with highest variance. The simu-
lations follow the same protocol as the synthetic data simula-
tion. The training set is formed by 50 examples drawn with-
out replacement from the data set. The examples not drawn
are used as the test set. Note that the training sets are not
fully independent. Since they are all drawn from the same

data set, there is an overlap between the training sets; how-
ever, for a training set size of 50 out of a pool of 295 or 203,
the amount of overlap between the training sets is small. The
average size of the overlap is about 8 examples for the breast-
cancer data sets and 12 examples for the lung-cancer data set.
The dependence between the samples is therefore weak and
does not have a big impact on the results. The different values
of the parameters can be found in Table 1. Our microarray
data-based simulations consist of a set of 24 experiments, 12
for breast cancer, and 12 for lung cancer. These are listed in
Tables C3 and C5 on the companion website, as experiments
61 through 72 and 73 through 84, respectively.

Note that on microarray data, we cannot perform experi-
ments with feature preselection. The reason is that we do not
know the actual relevant features for microarray data. If we
do a random selection, then it is likely that the selected fea-
tures will be irrelevant, so that the estimated and true errors
will be close to 0.5, which is a meaningless scenario.

5. RESULTS

5.1. Synthetic data results

Our discussion of synthetic data results focus on experiment
18; similar results can be seen for the other experiments on
the companion website. Experiment 18 is based on a linear
model with correlated features (ρ = 0.5), n = 100, D = 400,
d = 10, feature selection by the t-test, and classification by
3NN. The class-conditional densities are Gaussian and pos-
sess common variance σ1 = σ2 = 1.

Figure 1 shows the estimated- and true-error pairs. The
horizontal and vertical axes represent εest and εtru, respec-
tively. The dotted 45-degree line corresponds to εest = εtru.
The black line is the regression line. The means of the esti-
mated and true errors are marked by dots on the horizontal
and vertical axes, respectively. The three plots in Figure 1(a)
represent the comparison of the true error with the leave-
one-out error, the 5 × 5-fold cross-validation error, and the
0.632-bootstrap error. The difference between the means of
the true and estimated errors give the biases of the estima-
tors: E[εtru] = 0.26, whereas E[εloo] = 0.26, E[εcv] = 0.27,
and E[εb632] = 0.23. The leave-one-out and cross-validation
estimators are virtually unbiased and the bootstrap is slightly
biased. Estimator variance is represented by the width of the
scatter plot.
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Figure 1: Comparison of the true and estimated errors on artificial data: (a) experiment 18 with linear model, n = 100, D = 400, d = 10,
t-test selection and 3NN; (b) experiment 17 with linear model, n = 100, D = 10, feature preselection and 3NN; (c) experiment 115 with
linear model, n = 100, D = 400, no feature selection and 3NN.

Our focus is on the correlation and regression for the es-
timated and true errors. When we wish to distinguish fea-
ture selection from feature preselection from no feature se-
lection, we will denote these by ρ̂fs, ρ̂ps, and ρ̂ns, respectively.
When we wish to emphasize the error estimator, for instance,
leave-one-out, we will write ρ̂loofs , ρ̂loops , or ρ̂

loo
ns . In Figure 1(a),

the regression lines are almost parallel to the x-axis. Refer-
ring to (2), we see the role of the correlation in this lack of
regression, that is, the correlation is small for each estima-

tion rule: ρ̂loofs = 0.23, ρ̂cvfs = 0.07, and ρ̂b632fs = 0.18. Ignoring
the bias, which is small in all cases, the virtual loss of the
correlation term in (10) means that RMS2 ≈ Vardev[εest] ≈
σ2est + σ2tru, which is not small because σ2est and σ2tru are not
small.

Let us compare the preceding feature-selection setting
with experiment 17 (linear model, 10 correlated features, n =
100, feature preselection, 3NN), whose parameters are the
same except that there is a feature preselection, the classifier
being generated from d = 10 features. Figure 1(b) shows
the data plots and regression lines for experiment 17. In this
case, there is significant regression in all three cases with

ρ̂loops = 0.80, ρ̂cvps = 0.80, and ρ̂b632ps = 0.81. There is a drastic
difference in correlation and regression between the two ex-
periments. We compare now these results with experiment
115 (linear model, 400 correlated features, n = 100, no fea-
ture selection, 3NN) whose parameters are the same except
that there is no feature selection. Figure 1(c) shows the data
plots and regression lines for experiment 115. In this case,
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Table 2: Correlation of the true and estimated error on the artificial data. “ps” columns contains the correlation where a feature pre-selection
is performed, “ns” for no feature selection, “tt” for the t-test selection, “rf” for relief, and “mi” for mutual information. The blanks in the
table correspond to the experiments where the covariance matrix is not full rank and not invertible, and therefore the classifiers LDA and
QDA cannot be computed, and to the no feature selection case for uncorrelated models.

Model 1 Model 2 Model 3

ps ns tt rf mi ps ns tt rf mi ps ns tt rf mi

loo 0.62 — 0.17 0.29 0.22 0.43 — 0.07 0.17 0.11 0.56 — 0.14 0.28 0.21

cv 0.64 — 0.19 0.33 0.25 0.48 — 0.08 0.17 0.12 0.58 — 0.18 0.32 0.26

Boot632 0.64 — 0.19 0.34 0.24 0.49 — 0.06 0.16 0.13 0.59 — 0.18 0.32 0.24

Model 4 Model 5 Model 6

ps ns tt rf mi ps ns tt rf mi ps ns tt rf mi

loo 0.32 — 0.19 0.22 0.18 0.8 0.52 0.23 0.32 0.22 0.75 0.1 −0.07 0.07 0.18

cv 0.38 — 0.18 0.21 0.18 0.8 0.56 0.07 0.15 0.06 0.79 0.11 −0.18 −0.07 0.05

Boot632 0.4 — 0.14 0.17 0.16 0.81 0.53 0.18 0.23 0.15 0.78 0.11 0.06 0.19 0.18

Model 7 Model 8 Model 9

ps ns tt rf mi ps ns tt rf mi ps ns tt rf mi

loo 0.54 0.52 0.19 0.26 0.18 0.43 0.1 0.17 0.29 0.37 0.32 — 0.29 0.28 0.3

cv 0.54 0.56 0.02 0.11 0.04 0.53 0.11 0.15 0.19 0.32 0.32 — 0.4 0.36 0.39

Boot632 0.57 0.53 0.1 0.16 0.08 0.53 0.11 0.21 0.29 0.29 0.25 — 0.27 0.22 0.28

Model 10 Model 11 Model 12

ps ns tt rf mi ps ns tt rf mi ps ns tt rf mi

loo 0.55 — 0.12 0.17 0.13 0.37 — 0.25 0.35 0.28 0.82 — 0.24 0.29 0.29

cv 0.61 — 0.11 0.2 0.14 0.47 — 0.25 0.34 0.25 0.84 — 0.15 0.21 0.2

Boot632 0.62 — 0.09 0.19 0.1 0.48 — 0.2 0.26 0.17 0.84 — 0.21 0.24 0.22

Model 13 Model 14 Model 15

ps ns tt rf mi ps ns tt rf mi ps ns tt rf mi

loo 0.92 0.14 0.38 0.45 0.39 0.67 — 0.36 0.38 0.41 0.83 0.14 0.31 0.29 0.28

cv 0.93 0.15 0.26 0.32 0.24 0.72 — 0.4 0.43 0.45 0.86 0.15 0.22 0.21 0.16

Boot632 0.93 0.16 0.42 0.45 0.4 0.6 — 0.29 0.31 0.32 0.86 0.16 0.28 0.27 0.24

there is some regression in all three cases with ρ̂loons = 0.52,

ρ̂cvns = 0.56, and ρ̂b632ns = 0.53. The correlation of the no fea-
ture selection experiment is lower than the feature preselec-
tion experiment but higher than the feature-selection exper-
iment.

Table 2 shows the correlation between the estimated and
true errors for all experiments. For each of the 15 models,
the 5 columns show the correlations obtained with feature
pre-selection (ps), no feature selection (ns), t-test (tt), relief
(rf), and mutual information (mi) selection. Recall that we
cannot compare no feature selection experiments with the
other experiments in uncorrelated models, that is why there
are blanks in the columns “ns” of models 1, 2, 3, 4, 9, 10, 11.
The other blanks in Table 2 correspond to the experiments
where the covariance matrix is not full-rank and not invert-
ible, therefore the classifiers LDA and QDA cannot be com-
puted. In all cases, except with model 9, ρ̂fs < ρ̂ps, and often
ρ̂fs is very small. In model 9, ρ̂fs ≈ ρ̂ps, and in several cases,
ρ̂fs > ρ̂ps. What we observe is that ρ̂ps is unusually small in
this model, which has sample size 50 and QDA classification.
If we change the sample size to 100 or use LDA instead of
QDA, then we have the typical results for all estimation rules:
ρ̂ps gets larger and ρ̂fs is substantially smaller than ρ̂ps. The

correlation in no feature selection experiments depends on
the classification rule.

As might be expected, the correlation increases with in-
creasing sample size. This is illustrated in Figure 2, which
shows the correlation for increasing sample sizes usingmodel
2 (linear model, 200 uncorrelated features, n = 50, d = 5,
t-test, SVM). As illustrated, the increase tends to be slower
with feature selection than with feature preselection. Figure 3
shows the corresponding increase in regression with increas-
ing sample size (see experiments 85 through 97 in Table C1
on the companion website). This increase has little practical
impact because, as seen in (10), small error variances imply
a small deviation variance, irrespective of the correlation.

Figure 4 compares regression coefficients between no fea-
ture selection, feature preselection, and feature-selection ex-
periment: (a) âns and âfs, (b) âps and âns, (c) âps and âfs.
The regression coefficients are compared on models using
3NN and SVM: models 2, 4, 5, 6, 7, 8, 10, 11, 13, and 15.
For each model, the comparison is done with the 3 esti-
mation rules (loo, cv, boot). Figures 4(b) and 4(c) show
that âps is clearly higher than both âns and âfs. Figure 4(a)
shows that when compared to each other, neither âns nor
âfs is dominant. In general, no feature selection and fea-
ture-selection experiments produce poor regression between
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Figure 2: Correlation between estimated and true errors as a func-
tion of the number of examples. The black dot curve corresponds to
the experiments with feature preselection and the white-dot curve
to the experiments with feature selection. The dashed lines repre-
sent the 95% confidence intervals.

the true and estimated errors, with both âns and âfs below
0.4.

5.2. Microarray data results

For the microarray data results, we focus on two experi-
ments: 68 (breast-cancer data set, d = 30, relief, SVM) and 84
(lung-cancer data set, d = 40, mutual information, CART).
The results are presented in Figures 5(a) and 5(b), respec-
tively. In each case, there is very little correlation between
the estimated and true errors: in the breast-cancer data set,
0.13 for leave-on-out, 0.19 for cross-validation, and 0.16 for
bootstrap; in the lung-cancer data set, 0.02 for leave-on-out,
0.06 for cross-validation, and 0.07 for bootstrap. Tables 3 and
4 give the correlation values of all microarray experiments.
The results are similar to those obtained with the synthetic
data.

5.3. Discussion

It has long been appreciated that the variance of an error esti-
mator is important for its performance [22], but here we have
seen the effect of the correlation on the RMS of the error esti-
mator when samples are small. Looking at the decomposition
of (10), a natural question arises: which is more critical, the
increase in estimator variance or the decrease in correlation
between the estimated and true errors? To answer this ques-
tion, we begin by recognizing that the ideal estimator would
have â = 1 in (2), since this would mean that the estimated
and true errors are always equal. The loss of regression, that
is, the degree to which â falls below 1, depends on the two
factors in (2).

Letting

v̂ = σ̂ tru
σ̂est

. (14)

Equation (2) becomes â = v̂ρ̂. What causes more loss of
regression, the increase in estimator variance or the loss of
correlation, can be analyzed by quantifying the effect of fea-
ture selection on the factors v̂ and ρ̂. The question is this:
which is smaller, v̂fs/v̂ps or ρ̂fs/ρ̂ps? If v̂fs/v̂ps < ρ̂fs/ρ̂ps, then
the effect of feature selection on regression is due more
to estimator variance than to the correlation; however, if
ρ̂fs/ρ̂ps < v̂fs/v̂ps, then the effect owes more to the correla-
tion.

Figure 6 plots the ratio pairs (ρ̂fs/ρ̂ps, v̂fs/v̂ps) for the 15
models considered, with t-test and leave-one-out (squares),
cross-validation (circles), and bootstrap (triangles). The
closed and open dots refer to the correlated and uncorre-
latedmodels, respectively. In all cases, ρ̂fs/ρ̂ps < v̂fs/v̂ps, so that
decorrelation is the main reason for loss of regression. For all
three error estimators, ρ̂fs/ρ̂ps tends to be less than v̂fs/v̂ps to a
greater extent in the correlated models, with this effect being
less pronounced for bootstrap.

In the sameway, Figure 7 shows the comparison of the ra-
tios ρ̂ns/ρ̂ps and v̂ns/v̂ps. In the majority of the cases, ρ̂ns/ρ̂ps <
v̂ns/v̂ps demonstrates that again themain reason for loss of re-
gression is the decorrelation between the true and estimated
errors.

5.4. Conclusion

Owing to the peaking phenomenon, feature selection is
a necessary part of classifier design in the kind of high-
dimensional, small-sample settings commonplace in bioin-
formatics, in particular, with genomic phenotype classifica-
tion. Throughout our experiments for both synthetic and
microarray data, regardless of the classification rule, feature-
selection procedure, and estimation method, we have ob-
served that in such settings there is very little correlation
between the true and estimated errors. In some sense, it
is odd that one would use the random variable εest to es-
timate the random variable εtru, with which it is essen-
tially uncorrelated; however, for large samples, the ran-
dom variables are more correlated and, in any event, their
variances are then so small that the lack of correlation is
not problematic. It is the advent of high-feature dimen-
sionality with small samples in bioinformatics, that has
brought into play the decorrelation phenomenon, which
goes a long way towards explaining the negative impact of
feature selection on cross-validation error estimation pre-
viously reported [6, 7]. A key observation is that the de-
crease in correlation between the estimated and true er-
rors in high-dimensional settings has more effect on the
loss of regression for estimating εtru via εest than does the
change in the estimated-error variance relative to true-error
variance—with an actual decrease in variance often being the
case.
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Figure 3: Comparison of the true and estimated errors in the experiment 6 (linear model, 200 uncorrelated features, d = 5, t-test, SVM)
with different number of examples.
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âfs

0

0.2

0.4

0.6

0.8

1
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Figure 4: Comparison of the regression coefficient â on the artificial data. The left figure shows the comparison between feature selection and
no feature selection experiments. The center figure shows the comparison between feature preselection and no feature selection experiments.
The right figure shows the comparison between feature preselection and feature-selection experiments.

Table 3: Correlation of the true and estimated error on the breast-cancer data set. “ns” columns contains the correlation where no feature
selection is performed, “tt” for the t-test selection, “rf” for relief, and “mi” for mutual information.

LDA, d = 10 3NN, d = 20 SVM, d = 30 CART, d = 40

tt rf mi ns tt rf mi ns tt rf mi tt rf mi

loo 0.06 0.21 0.11 0.28 0.11 0.13 0.15 0.06 0.03 0.13 0.06 0.07 0.13 0.09

cv 0.06 0.24 0.13 0.30 0.12 0.15 0.18 0.08 0.05 0.19 0.08 0.15 0.18 0.15

Boot632 0.03 0.22 0.11 0.21 0.13 0.13 0.17 0.08 0.06 0.16 0.08 0.13 0.17 0.16
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Figure 5: Comparison of the true and estimated errors on microarray data. (a) Experiment 68 with the breast-cancer data set, d = 30, relief,
and SVM. (b) Experiment 84 with the lung-cancer data set, d = 40, mutual information, and CART.
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Figure 6: Comparison of the variance and correlation ratios
between feature selection and feature preselection experiments.
Squares corresponds to experiments with leave-one-out estima-
tors, circles with cross-validation, and triangles with bootstrap. The
closed and open dots refer to the correlated and uncorrelated mod-
els.

APPENDIX

t-test score

The t-test score measures how much a feature distinguishes

two classes: t = |μ0 − μ1|/
√

σ20/n0 + σ21/n1, where, μ, σ
2, and

n are the mean, variance, and number of examples of the
classes, respectively.

Mutual information

Mutual information measures the dependence between two
variables. It is used to estimate the information that a feature
contains to predict the class. A high value of mutual infor-
mation means that the feature contains a lot of information
for the class prediction. The mutual information, I(X ,C), is
based on the Shannon entropy and is defined in the follow-
ing manner: H(X) = −∑m

i=1p(X = xi) log p(X = xi) and
I(X ,C) = H(X)−H(X | C).

Relief

Relief is a popular feature selection method in machine
learning community [6, 7]. A key idea of the relief algorithm
is to estimate the quality of features according to how well
their values distinguish between examples that are near to
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Table 4: Correlation of the true and estimated error on the lung-cancer data. “ns” columns contains the correlation where no feature
selection is performed, “tt” for the t-test selection, “rf” for relief, and “mi” for mutual information.

LDA, d = 10 3NN, d = 20 SVM, d = 30 CART, d = 40

tt rf mi ns tt rf mi ns tt rf mi tt rf mi

loo 0.19 0.43 0.17 0.21 0.07 0.11 −0.02 −0.06 0.19 0.32 0.21 0.03 0.04 0.02

cv 0.16 0.39 0.11 0.27 0.04 0.02 −0.09 −0.12 0.17 0.27 0.16 0.07 0.03 0.06

Boot632 0.11 0.37 0.00 0.21 0.03 0.00 −0.09 −0.18 0.12 0.10 0.08 0.07 0.05 0.07
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Figure 7: Comparison of the variance and correlation ratios be-
tween feature preselection and no feature selection experiments.
Squares correspond to experiments with leave-one-out estimators,
circles with cross-validation, and triangles with bootstrap.

Require: A data set containing n examples and d features
Require: parameter k
Ensure:Weight of each featureW

Initialize all feature weightsW[i]← 0
for all features i do

for all examples j do
Cj ← class of example j
Zs

j ← the k nearest neighbors belonging to Cj

Zo
j ← the k nearest neighbors belonging to
an other class than Cj

for l such that l ∈ Zs
j do

W[i]←W[i]−∑ l distance( j, l)
end for
for l such that l ∈ Zo

j do
W[i]←W[i] +

∑

l distance( j, l)
end for

end for
end for

Algorithm 1: Relief algorithm.

each other. For that purpose, given a randomly selected ex-
ample X , relief searches for its 2k nearest neighbors: k from
the same class Zs

i and k from the other class Zo
i . It updates the

quality estimation W[F] for all features F depending on the
values of X , Zs

i , and Zo
i . If X and Zs

i have different values for
the feature F, then this feature separates two examples of the
same class. It is not desirable, and therefore its quality esti-
mation W[F] is decreased. On the other hand, if example X
and Zo

i have different values of the feature F, then the feature
F separates two examples of different classes. It is desirable,
and therefore its quality estimation W[F] is increased. This
process is repeated for each example.
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