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The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of proba-
bilistic Boolean networks (PBNs) from observed temporal sequences of network states. Since a PBN is composed of a finite number
of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be de-
termined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always
be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will
be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the
transition counting matrix would have some insignificant nonzero entries replacing some (or all) of the zeros. If a data sequence
is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is
straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean
network. We address the PBN inference procedure in several steps: (1) separate the data sequence into “pure” subsequences cor-
responding to constituent Boolean networks; (2) given a subsequence, infer a Boolean network; and (3) infer the probabilities of
perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities gov-
erning which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks,
be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given
the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to
providing an inference algorithm, this paper demonstrates that the data requirement is much smaller if one does not wish to infer
the switching, perturbation, and selection probabilities, and that constituent-network connectivity can be discovered with decent
accuracy for relatively small time-course sequences.

Copyright © 2007 Stephen Marshall et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

works that accurately reflect dynamic behavior. Instead, one
might just hope to obtain a set of networks whose steady state

A key issue in genomic signal processing is the inference of
gene regulatory networks [1]. Many methods have been pro-
posed and these are specific to the network model, for in-
stance, Boolean networks [2-5], probabilistic Boolean net-
works [6-9], and Bayesian networks [10-12], the latter being
related to probabilistic Boolean networks [13]. The manner
of inference depends on the kind of data available and the
constraints one imposes on the inference. For instance, pa-
tient data do not consist of time-course measurements and
are assumed to come from the steady state of the network,
so that inference procedures cannot be expected to yield net-

distributions are concordant, in some way, with the data.
Since inference involves selecting a network from a family
of networks, it can be beneficial to constrain the problem
by placing restrictions on the family, such as limited attrac-
tor structure and limited connectivity [5]. Alternatively one
might impose a structure on a probabilistic Boolean network
that resolves inconsistencies in the data arising from mixing
of data from several contexts [9].

This paper concerns inference of a probabilistic Boolean
network (PBN) from a single temporal sequence of network
states. Given a sufficiently long observation sequence, the
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goal is to infer a PBN that is a good candidate to have gen-
erated it. This situation is analogous to that of designing a
Wiener filter from a single sufficiently long observation of
a wide-sense stationary stochastic process. Here, we will be
dealing with an ergodic process so that all transitional rela-
tions will be observed numerous times if the observed se-
quence is sufficiently long. Should one have the opportu-
nity to observe multiple sequences, these can be used indi-
vidually in the manner proposed and the results combined
to provide the desired inference. Note that we say we de-
sire a good candidate, not the only candidate. Even with
constraints and a long sequence, there are many PBNs that
could have produced the sequence. This is typical in statisti-
cal inference. For instance, point estimation of the mean of
a distribution identifies a single value as the candidate for
the mean, and typically the probability of exactly estimat-
ing the mean is zero. What this paper provides, and what
is being provided in other papers on network inference, is
an inference procedure that generates a network that is to
some extent, and in some way, consistent with the observed
sequence.

We will not delve into arguments about Boolean or prob-
abilistic Boolean network modeling, these issues having been
extensively discussed elsewhere [14-21]; however, we do note
that PBN modeling is being used as a framework in which to
apply control theory, in particular, dynamic programming,
to design optimal intervention strategies based on the gene
regulatory structure [22-25]. With current technology it is
not possible to obtain sufficiently long data sequences to es-
timate the model parameters; however, in addition to us-
ing randomly generated networks, we will apply the infer-
ence to data generated from a PBN derived from a Boolean
network model for the segment polarity genes in drosophila
melanogaster [26], this being done by assuming that some
genes in the existing model cannot be observed, so that
they become latent variables outside the observable model
and therefore cause the kind of stochasticity associated with
PBNG.

It should be recognized that a key purpose of this pa-
per is to present the PBN inference problem in a rigorous
framework so that observational requirements become clear.
In addition, it is hoped that a crisp analysis of the problem
will lead to more approximate solutions based on the kind
of temporal data that will become available; indeed, in this
paper we propose a subsampling strategy that greatly miti-
gates the number of observations needed for the construc-
tion of the network functions and their associated regulatory
gene sets.

2. PROBABILISTIC BOOLEAN NETWORKS

A Boolean network (BN) consists of a set of n variables,
{X0,X1,...,X,_1}, where each variable can take on one of
two binary values, 0 or 1 [14, 15]. At any time point ¢
(t = 0,1,2,...), the state of the network is defined by the
vector x(t) = (xo(t),x1(t),...,x,-1(t)). For each variable x;,
there exist a predictor set {xio, Xi1,...,Xik#)-1) and a transi-
tion function f; determining the value of x; at the next time

point,

-xi(t + 1) = ﬁ(xiﬂ(t)7xil(t)) e )xi,k(i)fl(t))) (1)
where 0 < i0 < il < -+ <4, k(i) — 1 < n— 1. It is typi-
cally the case that, relative to the transition function f;, many
of the variables are nonessential, so that k(i) < n (or even
k(i) < n). Since the transition function is homogeneous in
time, meaning that it is time invariant, we can simplify the
notation by writing

xi = fi(Xios Xits > Xig(i)—1)- (2)
The n transition functions, together with the associated pre-
dictor sets, supply all the information necessary to deter-
mine the time evolution of the states of a Boolean network,
x(0) — x(1) — — x(t) — ---. The set of transi-
tion functions constitutes the network function, denoted as
f=(fo,. o fuo1)-

Attractors play a key role in Boolean networks. Given a
starting state, within a finite number of steps, the network
will transition into a cycle of states, called an attractor cycle
(or simply, attractor), and will continue to cycle thereafter.
Nonattractor states are transient and are visited at most once
on any network trajectory. The level of a state is the number
of transitions required for the network to transition from the
state into an attractor cycle. In gene regulatory modeling, at-
tractors are often identified with phenotypes [16].

A Boolean network with perturbation (BNp) is a Boolean
network altered so that, at any moment ¢, there is a probabil-
ity P of randomly flipping a variable of the current state x(¢)
of the BN. An ordinary BN possesses a stationary distribu-
tion but except in very special circumstances does not possess
a steady-state distribution. The state space is partitioned into
sets of states called basins, each basin corresponding to the
attractor into which its states will transition in due time. On
the other hand, for a BNp there is the possibility of flipping
from the current state into any other state at each moment.
Hence, the BNp is ergodic as a random process and possesses
a steady-state distribution. By definition, the attractor cycles
of a BNp are the attractor cycles of the BN obtained by setting
P=0.

A probabilistic Boolean network (PBN) consists of a fi-
nite collection of Boolean networks with perturbation over
a fixed set of variables, where each Boolean network is de-
fined by a fixed network function and all possess common
perturbation probability P [18, 20]. Moreover, at each mo-
ment, there is a probability q of switching out of the current
Boolean network to a different constituent Boolean network,
where each Boolean network composing the PBN has a prob-
ability (called selection probability) of being selected. If ¢ = 1,
then a new network function is randomly selected at each
time point, and the PBN is said to be instantaneously random,
the idea being to model uncertainty in model selection; if g <
1, then the PBN remains in a given constituent Boolean net-
work until a network switch and the PBN is said to be context
sensitive. The original introduction of PBNs considered only
instantaneously random PBNs [18] and using this model
PBN's were first used as the basis of applying control theory to
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optimal intervention strategies to drive network dynamics in
favorable directions, such as away from metastatic states in
cancer [22]. Subsequently, context-sensitive PBNs were in-
troduced to model the randomizing effect of latent variables
outside the network model and this leads to the development
of optimal intervention strategies that take into account the
effect of latent variables [23]. We defer to the literature for
a discussion of the role of latent variables [1]. Our interest
here is with context-sensitive PBNs, where ¢ is assumed to be
small, so that on average, the network is governed by a con-
stituent Boolean network for some amount of time before
switching to another constituent network. The perturbation
parameter p and the switching parameter g will be seen to
have effects on the proposed network-inference procedure.

By definition, the attractor cycles of a PBN are the at-
tractor cycles of its constituent Boolean networks. While the
attractor cycles of a single Boolean network must be disjoint,
those of a PBN need not to be disjoint since attractor cycles
from different constituent Boolean networks can intersect.
Owing to the possibility of perturbation, a PBN is ergodic
and possesses a steady-state distribution. We note that one
can define a PBN without perturbation but we will not do so.

Let us close this section by noting that there is nothing in-
herently necessary about the quantization {0, 1} for a PBN;
indeed, PBN modeling is often done with the ternary quan-
tization corresponding to a gene being down regulated (—1),
up regulated (1), or invariant (0). For any finite quantization
the model is still referred to as a PBN. In this paper we stay
with binary quantization for simplicity but it should be evi-
dent that the methodology applies to any finite quantization,
albeit, with greater complexity.

3. INFERENCE PROCEDURE FOR BOOLEAN
NETWORKS WITH PERTURBATION

We first consider the inference of a single Boolean network
with perturbation. Once this is accomplished, our task in the
context of PBNs will be reduced to locating the data in the
observed sequence corresponding to the various constituent
Boolean networks.

3.1. Inference based on the transition counting matrix
and a cost function

The characteristics of a Boolean network, with or without
perturbation, can be estimated by observing its pairwise state
transitions, x(t) — x(¢f + 1), where x(¢) can be an arbi-
trary vector from the n-dimensional state space B” = {0, 1}".
The states in B" are ordered lexicographically according to
{00---0,00---1,...,11- - - 1}. Given a temporal data se-
quence x(0),...,x(N), a transition counting matrix C can be
compiled over the data sequence showing the number ¢;; of
state transitions from the ith state to the jth state having oc-
curred,

€00 Co1 Co,2n—1
C10 C11 R S WL |
C= . (3)
Cn-1,0 C2n-1,1 Con—1,2n—1

If the temporal data sequence results from a BN without per-
turbations, then a given state will always be followed by a
unique state at the next time point, and each row of matrix C
contains at most one nonzero value. A typical nonzero entry
will correspond to a transition of the form agpa; - - - a, —
boby + + - by It {xi0, xi1,.. . Xiki)-1} is the predictor set for
x;, because the variables outside the set {xio, Xi1, ..., Xik(i)-1}
have no effect on f;, this tells us that fi(ai, air,. .., aik@-1) =
b; and one row of the truth table defining f; is obtained. The
single transition agpa; - - - a,, — bob; - - - by, gives one row of
each transition function for the BN. Given deterministic na-
ture of a BN, we will not be able to sufficiently populate the
matrix C on a single observed sequence because, based on
the initial state, the BN will transition into an attractor cycle
and remain there. Therefore, we need to observe many runs
from different initial states.

For a BNp with small perturbation probability, C will
likely have some nonzero entries replacing some (or all) of
the 0 entries. Owing to perturbation and the consequent
ergodicity, a sufficiently long data sequence will sufficiently
populate the matrix to determine the entries caused by per-
turbation, as well as the functions and inputs underlying the
model. A mapping x(t) — x(¢+1) will have been derived link-
ing pairs of state vectors. This mapping induces n transition
functions determining the state of each variable at time ¢ + 1
as a function of its predictors at time ¢, which are precisely
shown in (1) or (2). Given sufficient data, the functions and
the set of essential predictors may be determined by Boolean
reduction.

The task is facilitated by treating one variable at a time.
Given any variable, x;, and keeping in mind that some ob-
served state transitions arise from random perturbations
rather than transition functions, we wish to find the k(i)
variables that control x;. The k(i) input variables that most
closely correlate with the behavior of x; will be identified as
the predictors. Specifically, the next state of variable x; is a
function of k(i) variables, as in (2). The transition count-
ing matrix will contain one large single value on each line
(plus some “noise”). This value indicates the next state that
follows the current state of the sequence. It is therefore possi-
ble to create a two-column next-state table with current-state
column xpx; - - - x,—; and next-state column x{x] - - - x;_,,
there being 2” rows in the table, a typical entry looking like
00101 — 11001 in the case of 5 variables. If the states are
written in terms of their individual variables, then a map-
ping is produced from n variables to n variables, where the
next state of any variable may be written as a function of all
n input variables. The problem is to determine which sub-
set consisting of k(i) out of the n variables is the minimal set
needed to predict x;, fori = 0,1,...,n—1. We refer to the k(i)
variables in the minimal predictor set essential predictors.

To determine the essential predictors for a given variable,
x;, we will define a cost function. Assuming k variables are
used to predict x;, there are n!/(n — k)!k! ways of choos-
ing them. Each k with a choice of variables has a cost. By
minimizing the cost function, we can identify k such that
k = k(i), as well as the predictor set. In a Boolean network
without perturbation, if the value of x; is fully determined
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TasLE 1: Effect of essential variables.

Current state Next state
Xo X1 X2 X3 X4 X5 Xy X x3 Xi
0 0 1 1 0 1
0 0 1 1 1 1 \
\\ All inputs with
same value of xg,
/ X2, X3
0 1 1 1 0 1 should result in
the same output
0 1 1 1 1 1

by the predictor set, {xio,Xi1,...,Xik—1), then this set will
not change for different combinations of the remaining vari-
ables, which are nonessential insofar as x; is concerned.
Hence, so long as xio, Xi1,...,Xik—1 are fixed, the value of x;
should remain 0 or 1, regardless of the values of the remain-
ing variables. For any given realization (xi, Xi1, ..., Xik-1) =

(aio> air. .. dik-1),aij € {0, 1}, let
Uio i, .itk—1) (@i0> Qi1 - -+ > Aik—1)
= Z x?-(XO,Xl,... ,xn—l). (4)

Xi0 =@Ai05e>Xik—1=Ai k-1

According to this equation, w1, . ik-1)(io> Qi1 - . > Aik—1) 1S
the sum of the next-state values assuming xio, Xi1, . . . , Xik—1
are held fixed at ajp, a1, ..., aik—1, respectively. There will be
2"~k lines in the next-state table, where (xj, X1, ..., Xix 1) =
(aio> ait,...,aik-1), while other variables can vary. Thus,
there will be 2% terms in the summation. For instance, for
the example in Table 1, when x; = xo, k = 3,10 = 0, il = 2,
and i2 = 3, that is, x; = fi(x0, *, X2, X3, %), we have

u10,12,13(0) 1) l) = x‘l‘—(o) O> 1) l) 0) + x‘f(o) 0) 1) 1) 1) (S)
+x7(0,1,1,1,0) + x{ (0,1,1,1,1).
The term uioj1,....ik—1)(@io> A1, . . . » Aik—1) attains its maximum
(2"7%) or minimum (0) if the value of x; remains unchanged
on the 2% lines in the next-state table, which is the case in
the above example. Hence, the k inputs are good predictors of
the function if uio ;1,..ik—1)(@io> it . . » dik—1) is close to either
0 or 2"k,
The cost function is based on the quantity

7i0,i1,...,i(k—1) (ai()a Ailseees ai,k—l)

= uioin,.itk—1) (@io» Ait> - . . Ai—1) ]

znfk
[Uio,il ,,,,, i(k—l)(aio»ailr-"’ai,k—l)S 2 ] (6)

+ (2" % —wion, i) (@io» @ity . > Aik—1)) 1

zn—k
[uio,il ..... i(k—l)(ai0>ai1:--->ai,k—1)> B ]>

where I is the characteristic function. Function I(w) = 1
if w is true and function I(w) = 0 if w is false. The term
Tio,it,..itk—1)(@io» Git» - . . » dik—1) 1s designed to be minimized
if wioin,.itk—1)(@io> Ai1» - - ., aik—1) 1is close to either 0 or onk,
It represents a summation over one single realization of
the variables xjo, X;1,. .., X;ik—1. Therefore, we define the cost
function R by summing the individual costs over all possible
realizations of Xjo, Xi1,...,Xik—1:

R(xi0 Xi15 > Xik-1)

-3

ai0,@il 5> Aik-1 €0,1}

7i0,i1,...,i(k—1) (flio, Ailse o> ai,k—l)-

(7)

The essential predictors for variable x; are chosen to be the
k variables that minimize the cost R(xip, Xi1,...,Xix—1) and k
is selected as the smallest integer to achieve the minimum.
We emphasize on the smallest because if k (k < n) variables
can perfectly predict x;, then adding one more variable also
achieves the minimum cost. For small numbers of variables,
the k inputs may be chosen by a full search, with the cost
function being evaluated for every combination. For larger
numbers of variables, genetic algorithms can be used to min-
imize the cost function.

In some cases the next-state table is not fully defined, due
to insufficient temporal data. This means that there are do-
not-care outputs. Tests have shown that the input variables
may still be identified correctly even for 90% of missing data.

Once the input set of variables is determined, it is
straightforward to determine the functional relationship by
Boolean minimization [27]. In many cases the observed data
are insufficient to specify the behavior of the function for ev-
ery combination of input variables; however, by setting the
unknown states as do-not-care terms, an accurate approx-
imation of the true function may be achieved. The task is
simplified when the number k of input variables is small.

3.2. Complexity of the Procedure

We now consider the complexity of the proposed inference
procedure. The truth table consists of #n genes and therefore
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TaBLE 2: Values of B, .

k n
5 6 7 8 9 10 15 20 30 50
11430 86898 5.84x10° 3.61x10° 211x107 118x10® 423x 10" 1.04x10" 376 x10*"  1.94 x 10**
3 | 16480 141210 1.06 x 10° 7.17 x 10 4.55x 107 2.74 x 108 1.34 x 10?417 x 10" 5.52 x 10%! 1.74 x 10%
17545 159060  1.28 X 10°  9.32x 10°  6.35x 107  4.09x 108 271 x 102 1.08 x 10'®  6.47 x 10> 1.09 x 10%
TasLe 3: Computation times. 4. INFERENCE PROCEDURE FOR PROBABILISTIC
. n BOOLEAN NETWORKS
5 6 7 8 9 10 11 PBN inference is addressed in three steps: (1) split the tempo-
2| <ls <ls <ls 2s 12s 69s 4765 ral data sequence into subsequences corresponding to con-
3| <1s <l1s <1s 6s 36s 214s  2109s stituent Boolean networks; (2) apply the preceding inference
<ls <ls <ls 9s 68s 472s  3097s procedure to each subsequence; and (3) infer the perturba-

has 2" lines. We wish to identify the k predictors which best
describe the behavior of each gene. Each gene has a total of
C¢ = n!/(n — k)!k! possible sets of k predictors. Each of these
sets of k predictors has 2% different combinations of values.
For every specific combination there are 2"°* lines of the
truth table. These are lines where the predictors are fixed but
the values of the other (nonpredictor) genes change. These
must be processed according to (5), (6), and (7).

The individual terms in (5) are binary values, 0 or 1. The
cost function in (7) is designed to be maximized when all
terms in (5) are either all 0 or all 1; that is, the sum is ei-
ther at its minimum or maximum value. Simulations have
shown that this may be more efficiently computed by carry-
ing out all pairwise comparisons of terms and recording the
number of times they differ. Hence a summation has been re-
placed by a computationally more efficient series of compar-
ison operations. The number of pairs in a set of 2"~ values is
2n=k=1(2n=k _1), Therefore, the total number of comparisons
for a given n and k is given by

tion, switching, and selection probabilities. Having already
treated estimation of a BNp, in this section we address the
first and third steps.

4.1. Determining pure subsequences

The first objective is to identify points within the temporal
data sequence where there is a switch of constituent Boolean
networks. Between any two successive switch points there
will lie a pure temporal subsequence generated by a single
constituent network. The transition counting matrix result-
ing from a sufficiently long pure temporal subsequence will
have one large value in each row, with the remainder in each
row being small (resulting from perturbation). Any measure
of purity should therefore be maximized when the largest
value in each row is significantly larger than any other value.
The value of the transition counting matrix at row i and col-
umn j has already been defined in (3) as ¢;j. Let the largest
value of ¢;; in row i be defined as ¢} and the second largest
value be c£ The quantity ¢! — ¢ is proposed as the basis of
a purity function to determine the likelihood that the tempo-
ral subsequence lying between two data points is pure. As the

n!
Sk = (n EySYT —————_pkpn-kpn-k=1(pn-k _q) quantity relates to an individual row of the transition matrix,
! (8) it is summed over all rows and normalized by the total value
= HW L2kl (gnmk ), of the elements to give a single value P for each matrix:
n—k)lk!

This expression gives the number of comparisons for a fixed
value of k; however, if we wish to compute the number of
comparisons for all values of predictors, up to and including
k, then this is given by

w3

ia (n— ])']'

[I]

Zn—j—l(zn—j _ l) (9)

Values for E,x are given in Table 2 and actual computation
times taken on an Intel Pentium 4 with a 2.0 GHz clock and
768 MB of RAM are given in Table 3.

The values are quite consistent given the additional com-
putational overheads not accounted for in (9). Even for 10
genes and up to 4 selectors, the computation time is less than
8 minutes. Because the procedure of one BN is not depen-
dent on other BN, the inference of multiple BNs can be run
in parallel, so that time complexity is not an issue.

524 (el - @)

p==""1_ 1t~
21—1 <2"—1
Z Z, o GCij

(10)

The purity function P is maximized for a state transition ma-
trix when each row contains only one single large value and
the remaining values on each row are zero.

To illustrate the purity function, consider a temporal data
sequence of length N generated from two Boolean networks.
The first section of the sequence, from 0 to N, has been
generated from the first network and the remainder of the
sequence, from N; + 1 to N — 1, has been generated from
the second network. We desire an estimate # of the switch
point N;. The variable # splits the data sequence into two
parts and 0 < 5 < N — 1. The problem of locating the
switch point, and hence partitioning the data sequence, re-
duces to a search to locate Nj. To accomplish this, a trial
switch point, G, is varied and the data sets before and after
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FiGcure 1: Switch point estimation: (a) data sequence divided by a
sliding point G and transition matrices produced by for the data
on each side of the partition; (b) purity functions from W and V;
(c) simple function of two purity functions indicating switch point
between models.

it are mapped into two different transition counting matri-
ces, W and V. The ideal purity factor is a function which
is maximized for both W and V when G = Nj. The pro-
cedure is illustrated in Figure 1. Figure 1(a) shows how the
data are mapped from either side of a sliding point into the
transition matrices. Figure 1(b) shows the purity functions
derived from the transition counting matrices of W and V.
Figure 1(c) shows a simple functional of W and V (in this
case their product), which gives a peak at the correct switch
point. The estimate # of the switch point is detected via a
threshold.

Partitioning at first pass

emm P SRR > > >
Partitioning at second pass

FIGURE 2: Passes for partitioning: the overall sequence is divided at
the first pass into two shorter subsequences for testing. This is re-
peated in a second pass with the start and end points of the sub-
sequences offset in order to avoid missing a switch point due to
chaotic behavior.

The method described so far works well provided the se-
quence to be partitioned derives from two networks and the
switch point does not lie close to the edge of the sequence. If
the switch point lies close to the start or end of the sequence,
then one of the transition counting matrices will be insuffi-
ciently populated, thereby causing the purity function to ex-
hibit chaotic behavior.

If the data sequence is long and there is possibly a large
number of switch points, then the sequence can be divided
into a series of shorter subsequences that are individually
tested by the method described. Owing to the effects of
chaotic behavior near subsequence borders, the method is
repeated in a second pass in which the sequence is again di-
vided into shorter subsequences but with the start and end
points offset (see Figure 2). This ensures that a switch point
will not be missed simply because it lies close to the edge of
the data subsequence being tested.

The purity function provides a measure of the difference
in the relative behavior of two Boolean networks. It is pos-
sible that two Boolean networks can be different but still
have many common transitions between their states. In this
case the purity function will indicate a smaller distinction be-
tween the two models. This is particularly true where the two
models have common attractors. Moreover, on average, the
value of the purity function may vary greatly between sub-
sequences. Hence, we apply the following normalization to
obtain a normalized purity value:

P-T
Poorm = T > (11)

where P is the purity value in the window and T is either the
mean or geometric mean of the window values. The normal-
ization removes differences in the ranges and average values
of points in different subsequence, thereby making it easier
to identify genuine peaks resulting from switches between
Boolean networks.

If two constituent Boolean networks are very similar,
then it is more difficult to distinguish them and they may
be identified as being the same on account of insufficient
or noisy data. This kind of problem is inherent to any in-
ference procedure. If two networks are identified during in-
ference, this will affect the switching probability because
it will be based on the inferred model, which will have
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less constituent Boolean networks because some have been
identified. In practice, noisy data are typically problematic
owing to overfitting, the result being spurious constituent
Boolean networks in the inferred model. This overfitting
problem has been addressed elsewhere by using Hamming-
distance filters to identify close data profiles [9]. By iden-
tifying similar networks, the current proposed procedure
acts like a lowpass filter and thereby mitigates overfit-
ting. As with any lowpass filter, discrimination capacity is
diminished.

4.2. Estimation of the switching, selection, and
perturbation probabilities

So far we have been concerned with identifying a family of
Boolean networks composing a PBN; much longer data se-
quences are required to estimate the switching, selection, and
perturbation probabilities. The switching probability may be
estimated simply by dividing the number of switch points
found by the total sequence length. The perturbation prob-
ability is estimated by identifying those transitions in the se-
quence not determined by a constituent-network function.
For every data point, the next state is predicted using the
model that has been found. If the predicted state does not
match the actual state, then it is recorded as being caused by
perturbation. Switch points are omitted from this process.
The perturbation rate is then calculated by dividing the total
instances of perturbation by the length of the data sequence.

Regarding the selection probabilities, we assume that a
constituent network cannot switch into itself; otherwise there
would be no switch. This assumption is consistent with the
heuristic that a switch results from the change of a latent vari-
able that in turn results in a change of the network structure.
Thus, the selection probabilities are conditional, depending
on the current network. The conditional probabilities are of
the form g4p, which gives the probability of selecting net-
work B during a switch, given the current network is A, and
qag is estimated by dividing the number of times the data
sequence switches from A to B by the number of times it
switches out of A.

In all cases, the length N of the sequence necessary to ob-
tain good estimates is key. This issue is related to how often
we expect to observe a perturbation, network switch, or net-
work selection during a data sequence. It can be addressed in
terms of the relevant network parameters.

We first consider estimation of the perturbation proba-
bility P. Note that we have defined P as the probability of
making a random state selection, whereas in some papers
each variable is given a probability of randomly changing. If
the observed sequence has length N and we let X denote the
number of perturbations (0 or 1) at a given time point, then
the mean of X is p and the estimate, p, we are using for p is
the sample mean of X for a random sample of size N, the
sample being random because perturbations are indepen-
dent. The expected number of perturbations is N p, which
is the mean of the random variable S given by an indepen-
dent sum of N random variables identically distributed to X.
S possesses a binomial distribution with variance Np(1 — p).

A measure of goodness of the estimator is given by
P(lp—pl <e) = P(INp — S| < Ng) (12)

for ¢ > 0. Because S possesses a binomial distribution, this
probability is directly expressible in terms of the binomial
density, which means that the goodness of our estimator is
completely characterized. This computation is problematic
for large N, but if N is sufficiently large so that the rule-of-
thumb min{Np,N(1 — p)} > 5 is satisfied, then the normal
approximation to the binomial distribution can be used.
Chebyshev’s inequality provides a lower bound:

P(lp—pl<e) =1-P(INp—S| = Ne)

L PU-p) (13)
~ Ne

A good estimate is very likely if N is sufficiently large to
make the fraction very small. Although often loose, Cheby-
shev’s inequality provides an asymptotic guarantee of good-
ness. The salient issue is that the expected number of pertur-
bations (in the denominator) becomes large.

A completely analogous analysis applies to the switching
probability g, with g replacing p and g replacing p in (12)
and (13), with Nq being the expected number of switches.

To estimate the selection probabilities, let p;; be the prob-
ability of selecting network B; given a switch is called for and
the current network is B;, ﬁij its estimator, #; the probability
of observing a switch out of network B, 7; the estimator of r;
formed by dividing the number of times the PBN is observed
switching out of B; divided by N, s;; the probability of ob-
serving a switch from network B; to network B;, and 55 ; the
estimator of s;; formed by dividing the number of times the
PBN is observed switching out of B; into B; by N. The esti-
mator of interest, p;;, can be expressed as §;;/7;. The probabil-
ity of observing a switch out of B; is given by qP(B;), where
P(B;) is the probability that the PBN is in B;, so that the ex-
pected number of times such a switch is observed is given by
NgP(B;). There is an obvious issue here: P(B;) is not a model
parameter. We will return to this issue.

Let us first consider §;;. Define the following events: A is
a switch at time ¢, B! is the event of the PBN being in network
B; at time t, and [B; — B;]' is the event B; switches to B; at
time t. Then, because the occurrence of a switch is indepen-
dent of the current network,

P([B; — B;]') = P(A")P(B!"")P([B; — B;]' | BI™")
= qP(B{") pij.
(14)

The probability of interest depends on the time, as does
the probability of being in a particular constituent network;
however, if we assume the PBN is in the steady state, then the
time parameters drop out to yield

P([B; — Bj]t) = qP(B:) pij. (15)

Therefore the number of times we expect to see a switch from
B; to Bj is given by NgqP(B;) pi;.
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Let us now return to the issue of P(B;) not being a model
parameter. In fact, although it is not directly a model param-
eter, it can be expressed in terms of the model parameters so
long as we assume we are in the steady state. Since

B~ 1) 0" (a0 Usy (8, — 81
J
J (16)

a straightforward probability analysis yields

P(Bj) = (1-q)P(B{")

+qZP(B§_1)P([Bj . Bi]t | B§_1)- (17)
i

Under the steady-state assumption the time parameters may
be dropped to yield

P(B;) = > pjiP(B;). (18)
j#i

Hence, the network probabilities are given in terms of the
selection probabilities by

-1 pu -+ pm\ /P(B1)
P2 -1 -+ pm|| P(B)

0= . . . . . (19)
le Pz,m—l e -1 P(Bm)

5. EXPERIMENTAL RESULTS

A variety of experiments have been performed to assess the
proposed algorithm. These include experiments on single
BNs, PBNs, and real data. Insofar as the switching, selection,
and perturbation probabilities are concerned, their estima-
tion has been characterized analytically in the previous sec-
tion so we will not be concerned with them here.

Thus, we are concerned with the percentages of the pre-
dictors and functions recovered from a generated sequence.
Letting c,, and ¢, be the number of predictors correctly iden-
tified and the total number of predictors in the network, re-
spectively, the percentage, 7, of predictors correctly identi-
fied is given by

[
mp = £ % 100. (20)
tp

Letting cs and t; be the number of function outputs cor-
rectly identified and the total number of function outputs in
network, respectively, the percentage, 7y, of function outputs
correctly identified is given by
f
= —= X 100. 21
T 21

The functions may be written as truth tables and 7y corre-
sponds to the percentage of lines in all the truth tables re-
covered from the data which correctly match the lines of the
truth tables for the original function.

TABLE 4: Average percentage of predictors and functions recovered
from 104 BN sequences consisting of #n = 7 variables for k = 2 and
k=3,and P = .01.

Model recovery
Sequence length Predictors Functions

recovered (%) recovered (%)
k=2 k=3 k=2 k=3
500 46.27 21.85 34.59 12.26
1000 54.33 28.24 45.22 19.98
2000 71.71 29.84 64.28 22.03
4000 98.08 34.87 96.73 28.53
6000 98.11 50.12 97.75 42.53
8000 98.18 50.69 97.87 43.23
10000 98.80 51.39 98.25 43.74
20000 100 78.39 98.333 69.29
30000 100 85.89 99.67 79.66
40000 100 87.98 99.75 80.25

5.1. Single Boolean networks

When inferring the parameters of single BNs from data se-
quences by our method, it was found that the predictors and
functions underlying the data could be determined very ac-
curately from a limited number of observations. This means
that even when only a small number of the total states and
possible transitions of the model are observed, the parame-
ters can still be extracted.

These tests have been conducted using a database of 80
sequences generated by single BNs with perturbation. These
have been constructed by randomly generating 16 BNs with
n = 7 variables and connectivity k = 2 or k = 3,and P = .01.
The sequence lengths vary in 10 steps from 500 to 40 000,
as shown in Table 4. The table shows the percentages of the
predictors and functions recovered from a sequence gener-
ated by a single BN, that is, a pure sequence with n = 7,
for k = 2 or k = 3, expressed as a function of the overall
sequence length. The average percentages of predictors and
functions recovered from BN sequences with k = 2 is much
higher than for k = 3 in the same sequence length.

5.2. Probabilistic Boolean networks

For the analysis of PBN inference, we have constructed two
databases consisting of sequences generated by PBNs with
n =7 genes.

(i) Database A: the sequences are generated by 80 randomly
generated PBNs and sequence lengths vary in 10 steps
from 2000 to 500 000, each with different values of p
and ¢, and two different levels of connectivity k.

(i) Database B: 200 sequences of length 100 000 are gener-
ated from 200 randomly generated PBNs, each having
4 constituent BNs with k = 3 predictors. The switching
probability g varies in 10 values: .0001, .0002, .0005,
.001, .002, .005, .01, .02, .05, 0.1.
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The key issue for PBNs is how the inference algorithm
works relative to the identification of switch points via the
purity function. If the data sequence is successfully parti-
tioned into pure sequences, each generated by a constituent
BN, then the BN results show that the predictors and func-
tions can be accurately determined from a limited number of
observations. Hence, our main concern with PBNs is appre-
hending the effects of the switching probability g, perturba-
tion probability p, connectivity k, and sequence length. For
instance, if there is a low switching probability, say g = .001,
then the resulting pure subsequences may be several hun-
dred data points long. So while each BN may be character-
ized from a few hundred data points, it may be necessary to
observe a very long sequence simply to encounter all of the
constituent BNs.

When analyzing long sequences there are two strategies
that can be applied after the data have been partitioned into
pure subsequences.

(1) Select one subsequence for each BN and analyze that
only.

(2) Collate all subsequences generated by the same BN and
analyze each set.

Using the first strategy, the accuracy of the recovery of the
predictors and functions tends to go down as the switching
probability goes up because the lengths of the subsequences
get shorter as the switching probability increases. Using the
second strategy, the recovery rate is almost independent of
the switching probability because the same number of data
points from each BN is encountered. They are just cut up
into smaller subsequences. Past a certain threshold, when the
switching probability is very high the subsequences are so
short that they are hard to classify.

Figure 3 shows a graph of predictor recovery as a function
of switching probability for the two strategies using database
B. Both strategies give poor recovery for low switching prob-
ability because not all of the BN are seen. Strategy 2 is more
effective in recovering the underlying model parameters over
a wider range of switching values. For higher values of g,
the results from strategy 1 decline as the subsequences get
shorter. The results for strategy 2 eventually decline as the se-
quences become so short that they cannot be effectively clas-
sified.

These observations are borne out by the results in
Figure 4, which show the percentage of predictors recovered
using strategy 2 from a PBN-generated sequence with 4 BNs
consisting of n = 7 variables with k = 3, P = .01, and switch-
ing probabilities ¢ = .001 and g = .005 for various length
sequences using database A. It can be seen that for low se-
quence lengths and low probability, only 21% of the predic-
tors are recovered because only one BN has been observed.
As sequence length increases, the percentage of predictors re-
covered increases and at all times the higher switching prob-
ability does best, with the gap closing for very long sequence
lengths.

More comparisons are given in Figures 5 and 6, which
compare the percentage predictor recovery for two different
connectivity values and for two different perturbation val-
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FiGURE 3: The percentage of predictors recovered from fixed length
PBN sequences (of 100 000 sample points). The sequence is gener-
ated from 4 BNs, with n = 7 variables and k = 3 predictors, and
P =.01.
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F1GURE 4: The percentage of predictors recovered using strategy 2
from a sequence generated from a PBN with 4 BNs consisting of
n = 7 variables with k = 3, P = .01 and switching probabilities
q = .001 and g = .005 for various length sequences.

ues, respectively. They both result from strategy 2 applied to
database A. It can be seen that it is easier to recover predictors
for smaller values of k and larger values of p.

A fuller picture of the recovery of predictors and func-
tions from a PBN sequence of varying length, varying k, and
varying switching probability is given in Table 5 for database
A, where P = .01 and there are three different switching
probabilities: ¢ = .001,.005,.03. As expected, it is easier to
recover predictors for low values of k. Also over this range
the percentage recovery of both functions and predictors in-
creases with increasing switching probability.
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TasBLE 5: The percentage of predictors recovered by strategy 2 as a function of various length sequences from sequences generated by experi-
mental design A with at P = .01, switching probabilities, g = .001,.005,.03, and for k = 2 and k = 3.

q =.001 q = .005 q=.03
Sequence length Predictor Functions Predictor Functions Predictor Functions

recovered (%) recovered (%) recovered (%) recovered (%) recovered (%) recovered (%)
k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3
2000 22.07 20.94 20.15 12.95 50.74 41.79 37.27 25.44 65.25 48.84 53.52 34.01
4000 36.90 36.31 33.13 23.89 55.43 52.54 42.49 37.06 74.88 56.08 66.31 42.72
6000 53.59 38.80 43.23 26.79 76.08 54.92 66.74 42.02 75.69 64.33 67.20 51.97
8000 54.75 44.54 47.15 29.42 77.02 59.77 67.48 45.07 76.22 67.86 67.72 55.10
10000 58.69 45.63 53.57 36.29 79.10 65.37 69.47 51.94 86.36 73.82 80.92 61.84
50 000 91.50 75.03 88.22 65.29 94.58 80.07 92.59 71.55 96.70 86.64 94.71 78.32
100 000 97.28 79.68 95.43 71.19 97.97 85.51 96.47 78.34 98.47 90.71 96.68 85.06
200000 97.69 83.65 96.39 76.23 98.68 86.76 97.75 80.24 99.27 94.02 98.03 90.79
300000 97.98 85.62 96.82 79.00 99.00 92.37 98.19 88.28 99.40 95.50 98.97 92.50
500 000 99.40 89.88 98.67 84.85 99.68 93.90 99.18 90.30 99.83 96.69 99.25 94.21
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FiGUre 5: The percentage of predictors recovered using strategy 2
and experimental design A as a function of sequence length for con-
nectivities k = 2 and k = 3.
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FIGURE 6: The percentage of predictors recovered using strategy 2
and experimental design A as a function of sequence length for per-
turbation probabilities P = .02 and P = .005.

We have seen the marginal effects of the switching and
perturbation probabilities, but what about their combined
effects? To understand this interaction, and to do so taking
into account both the number of genes and the sequence
length, we have conducted a series of experiments using ran-
domly generated PBNs composed of either n = 7 or n = 10
genes, and possessing different switching and perturbation
values. The result is a set of surfaces giving the percentages of
predictors recovered as a function of p and gq.

The PBNs have been generated according to the following
protocol.

(1) Randomly generate 80 BNs with n = 7 variables and
connectivity k = 3 (each variable has at most 3 predictors,
the number for each variable being randomly selected). Ran-
domly order the BNs as A1, A2,..., A80.

(2) Consider the following perturbation and switching
probabilities: P = .005, P = .01, P = .015, P = .02, g = .001,
q =.005,q9 = .01,9 = .02, q = .03.

(3) For each p, g, do the following: (1) construct a PBN
from A1, A2, A3, A4 with selection probabilities 0.1, 0.2, 0.3,
0.4, respectively; (2) construct a PBN from A5, A6, A7, A8
with selection probabilities 0.1, 0.2, 0.3, 0.4, respectively; (3)
continue until the BNs are used up.

(4) Apply the inference algorithm to all PBNs using data
sequences of length N = 4000, 6000, 8000, 10 000, 50 000.

(5) Repeat the same procedure from (1)—(4) using 10
variables.

Figures 7 and 8 show fitted surfaces for n = 7 and n = 10,
respectively. We can make several observations in the param-
eter region considered: (a) as expected, the surface heights
increase with increasing sequence length; (b) as expected, the
surface heights are lower for more genes, meaning that longer
sequences are needed for more genes; (c) the surfaces tend
to increase in height for both p and g, but if g is too large,
then recovery percentages begin to decline. The trends are
the same for both numbers of genes, but recovery requires
increasingly long sequences for larger numbers of genes.
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6. A SUBSAMPLING STRATEGY functions of a single BN. Moreover, it is usually only neces-

sary to observe a few hundred sample points to classify a BN
It is usually only necessary to observe a few thousand sample ~ as being BN1, BN2, and so forth. However, in analyzing a

points in order to determine the underlying predictors and ~ PBN-generated sequence with low switching probability, say
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F1GURE 8: Predictor recovery as a function of switching and perturbation probabilities for n = 10 genes: (a) N = 4000, (b) N = 6000, (c)
N = 8000, (d) N = 10000, (e) N = 50000.
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Figure 10: Predictor recovery percentages using various sub-
sampling regimes.

q = .001, it is necessary on average to observe 1,000 points
before a switch to the second BN occurs. This requires huge
data lengths, not for deriving the parameters (predictors and
functions) of the underlying model, but in order for a switch
to occur in order to observe another BN.

This motivates consideration of subsampling. Rather
than analyzing the full sequence, we analyze a small subse-
quence of data points, skip a large run of points, analyze an-
other sample, skip more points, and so forth. If the sample is
sufficiently long to classify it correctly, then the samples from
the same BN may be collated to produce good parameter es-
timates. The subsampling strategy is illustrated in Figure 9.
It is for use with data possessing a low switching probabil-
ity. It is only necessary to see a sequence containing a small
number of sample points of each BN in order to identify the
BN. The length of the sampled subsequences is fixed at some
value S.

To test the subsampling strategy, a set of 20 data se-
quences, each consisting of 100 000 samples points, was gen-
erated from a PBN consisting of 4 BNs, n = 7 variables,
k =2,P = .01, and g = .001 in database A. We define a
sampling space to consist of a sampling window and non-
sampling interval, so that the length of a sampling space
is given by L = S + I, where I is the length of the non-
sampling interval. We have considered sampling spaces of
lengths L = 200,400, 600, 800, 1000, 2000, 3000, 4000, 5000,
and 10 000 and sampling windows (subsequences) of lengths
S = 50,100,150, and 200. When S = L, there is no sub-
sampling. The results are shown in Figure 10, which shows
the percentage of predictors recovered. The recovery percent-
age by processing all 100000 points in the full sequence is
97.28%.

Subsampling represents an effort at complexity reduction
and is commonly used in engineering applications to gain
speed and reduce cost. From a larger perspective, the en-
tire investigation of gene regulatory networks needs to take
complexity reduction into consideration because in the nat-
ural state the networks are extremely complex. The issue
is whether goals can be accomplished better using fine- or
coarse-grained analysis [28]. For instance, a stochastic differ-
ential equation model might provide a more complete de-
scription in principle, but a low-quantized discrete network
might give better results owing to reduced inference require-
ments or computational complexity. Indeed, in this paper
we have seen the inference difficulty that occurs by taking
into account the stochasticity caused by latent variables on
a coarse binary model. Not only does complexity reduction
motivate the use of models possessing smaller numbers of
critical parameters and relations, for instance, by network
reduction [29] suppressing functional relations in favor of
a straight transitional probabilistic model [30], it also moti-
vates suboptimal inference, as in the case of the subsampling
discussed herein or in the application of suboptimal inter-
vention strategies to network models, such as PBNs [31].

7. REAL-DATA NETWORK EXPERIMENT

To test the inference technique on real data, we have con-
sidered an experiment based on a model affected by latent
variables, these being a key reason for PBN modeling. La-
tent variables are variables outside the model whose behavior
causes the model to appear random—switch between con-
stituent networks.

The real-gene PBN is derived from the drosophila seg-
ment polarity genes for which a Boolean network has been
derived that consists of 8 genes: wgi, wg,, wgs, wgs, PTCy,
PTC,, PTCs, and PTC, [26]. The genes are controlled by
the following equations:

wg1 = wgi and not wg, and not wgy,
wg = wg and not wg; and not wgs,
wgs = wg) or wgs,
wgs = wgy or wgs,
PTC; = (not wg; and not wgy) or (22)
(PTCy and not wg; and not wgs),
PTC, = (not wg; and not wgs) or
(PTC, and not wg, and not wgy),
PTGCs =1, PTC, = 1.

Now let wgy and PTCy4 be hidden variables (not observ-
able). Since PTCy4 has a constant value, its being a hidden
variable has no effect on the network. However, if we let



14 EURASIP Journal on Bioinformatics and Systems Biology
TaBLE 6: Percentages of the predictors and functions recovered from the segment polarity PBN.
q =.001 q =.005 q=.02
Length Predictor Function Predictor Function Predictor Function
recovered (%) recovered (%) recovered (%) recovered (%) recovered (%) recovered (%)

2000 51.94 36.83 56.95 39.81 68.74 49.43
4000 58.39 38.49 59.86 44.53 70.26 52.86
6000 65.78 50.77 80.42 65.40 85.60 68.11
8000 72.74 59.23 83.97 69.47 86.82 70.28
10000 76.03 63.98 88.10 74.31 92.80 77.83
20000 87.81 76.86 95.68 81.60 96.98 83.48
30000 97.35 84.61 97.65 88.28 99.17 88.82
40000 98.64 85.74 99.19 90.03 99.66 91.05
50000 99.59 90.18 99.59 90.35 99.79 91.94
100 000 99.69 90.85 99.87 91.19 100 93.97

wgs = 0 or 1, we will arrive at a 6-gene PBN consisting of
two BNs. When wgy = 0, we have the following BN:

wg1 = wg and not wgy,

wg, = wg, and not wg; and not wgs,

wgs
PTC
PTC, = (not wg; and not wgs) or (PTC, and not wg,),

wg1 or wgs,

(not wg,) or (PTC; and not wg; and not wgs ),

PTC; = 1.
(23)
When wgy = 1, we have the following BN:
wg1 = wg and not wg, and 0,
wgy = wg, and not wg; and not wgs,
wgs = wgi or wgs,
PTC, = (not wg, and 0) or
¢ (24)

(PTCy and not wg; and not wgs),
PTC, = (not wgy and not wgs) or
(PTC; and not wg, and 0),
PTCs =1.

Together, these compose a 6-gene PBN. Note that in the sec-
ond BN we do not simplify the functions for wg;, PTC;, and
PTCs, so that they have the same predictors as in the first BN.

There are 6 genes considered here: wg;, wg,, wgs, PTC,
PTC,, and PTCs. The maximum number of predictor genes
is k = 4. The two constituent networks are regulated by the
same predictor sets. Based on this real-gene regulatory net-
work, synthetic sequences have been generated and the infer-
ence procedure is applied to these sequences. 600 sequences
with 10 different lengths (between 2000 and 100 000) have
been generated with various lengths, P = .01, and three
switching probabilities, g = .001,.005,.02. Table 6 shows the
average percentages of the predictors and functions recov-
ered.

8. CONCLUSION

Capturing the full dynamic behavior of probabilistic Boolean
networks, whether they are binary or multivalued, will re-
quire the use of temporal data, and a goodly amount of it.
This should not be surprising given the complexity of the
model and the number of parameters, both transitional and
static, that must be estimated. This paper proposed an al-
gorithm that works well, but shows the data requirement. It
also demonstrates that the data requirement is much smaller
if one does not wish to infer the switching, perturbation, and
selection probabilities, and that constituent-network con-
nectivity can be discovered with decent accuracy for relatively
small time-course sequences. The switching and perturba-
tion probabilities are key factors, since if they are very small,
then large amounts of time are needed to escape attractors;
on the other hand, if they are large, estimation accuracy is
hurt. Were we to restrict our goal to functional descriptions
of state transitions when in attractor cycles, then the neces-
sary amount of data would be enormously reduced; however,
our goal in this paper is to capture as much of the PBN struc-
ture as possible, including transient regulation.

Among the implications of the issues raised in this pa-
per, there is a clear message regarding the tradeoff between
fine- and coarse-grain models. Even if we consider a binary
PBN, which is considered to be a coarse-grain model, and a
small number of genes, the added complexity of accounting
for function switches owing to latent variables significantly
increases the data requirement. This is the kind of complex-
ity problem indicative of what one must confront when using
solely data-driven learning algorithms. Further study should
include mitigation of data requirements by prior knowledge,
such as transcriptional knowledge of connectivity or regu-
latory functions for some genes involved in the network. It
is also important to consider the reduction in complexity
resulting from prior constraints on the network generating
the data. These might include: connectivity, attractor struc-
ture, the effect of canalizing functions, and regulatory bias.
In the other direction, one can consider complicating factors
such as missing data and inference when data measurements
cannot be placed into direct relation with the synchronous
temporal dynamics of the model.
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