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Abstract

In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic
graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established
biological interaction models, we detect and classify the interactions between genes. We propose a novel linear
integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological
dependencies among genes and to compute the DAG topology that matches the DK measurements best.
Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further
enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes
under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric
simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform
the conventional techniques and present real data results for our proposed sequential scalability technique.

Keywords: Genetic interaction analysis, Large-scale gene networks, Discrete optimization, Graph learning, Big data,
Multiple hypothesis test

1 Introduction
Genetic interaction analysis aims at uncovering the inter-
actions among a set of genes with respect to a specified cell
function of a biological system, e.g., the fitness of a specific
bacteria colony. The interactions among the genes under
study can be characterized by a directed acyclic graph
(DAG) [1] where the hierarchical relationship among two
genes of a DAG describes their hierarchical interaction
type [2]. However, DAGs cannot be observed directly
but only the specified cell function under study which
yields observable phenotypes. The term phenotype gen-
erally describes the specific manifestation of a biolog-
ical attribute of an organism which can be observed,
e.g., for bacteria, a common biological attribute is the
growth measured in colony size, where a specific size
of the bacteria colony is a phenotype of this biological
attribute.
The role of the studied genes in the cell machinery and

the hierarchical interaction types of the genes, as well as
the DAG, which describes the latter ones, can only be
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learned by means of knockout experiments where a gene
or a set of genes is functionally switched off and the phe-
notype is observed. Traditionally, only single-knockout
(SK) experiments have been conducted but those mainly
provide evidence on the importance of a single gene for
the investigated cell process and do not convey much
information about the interaction among the genes under
study.
Recently, with the technological advances in microar-

rays and the development of the synthetic genetic array
technologies [3], new approaches have been taken that
are based on large-scale knockout experiments of pairs of
genes. Such double-knockout (DK) experiments are much
more powerful for exploring genetic interactions since
a DK phenotype of an arbitrary pair of genes generally
differs considerably from the superposition of the corre-
sponding SK phenotypes of this pair of genes. According
to [2], the gene pairs can be classified into one out of five
hierarchical relationship classes based on their SK and DK
phenotypes. Further, based on the hierarchical relation-
ship classes, the DAG underlying the observed SK and
DK phenotypes can be inferred which directly reflects the
genetic interactions among the genes.
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In order to detect the DAG underlying the SK and
DK phenotypes, a variety of statistical methods based on
scoring the measurements or on thresholding the genetic
interaction (GI)-profile data, which is commonly based
on Pearson correlation of the SK and DK phenotypes
[4–9], respectively, have been developed. However, meth-
ods as presented in [4–9] have three considerable disad-
vantages: (D1) they show poor performance in detecting
the DAG underlying the observed SK and DK pheno-
types; (D2) they have no ability to combine different
types of side information, e.g., GI-profile data with SK
and DK phenotypes, to enhance the detection quality;
and (D3) they cannot make use of prior knowledge in
order to enhance the DAG detection quality. Especially,
the ability to overcome the disadvantage in (D2) will
become more important in the future, since there is a
constantly increasing amount of different data types, e.g.,
SK and DK phenotypes, Pearson correlation-based GI-
profile data, and other types of GI-profile data, freely
available. Furthermore, the ability to overcome the deficit
in (D3), i.e., to incorporate a priori knowledge about
the existing results in genomics research into the DAG
detection procedure, is also of great significance, since
existing functional relationships among genes are increas-
ingly better understood based on a variety of studies that
constantly extend the knowledge on the cell machinery
and molecular biology. Although exhibiting the above-
mentioned disadvantages (D1) to (D3), methods as those
presented in [4–9] are the most commonly used meth-
ods to detect the DAG underlying the measured SK and
DK data. Therefore, we propose the Genetic-Interactions-
Detector (GENIE) program, that is an approach based
on the biological system model of [2] with which it
is possible to overcome the abovementioned shortcom-
ings of the most popular methods as those reported in
[4–9]. Since the hierarchical relationship classes aremutu-
ally dependent, classifying each pair of genes to a specific
hierarchical relationship class corresponds to a multi-
hypothesis test. Thus, we formulate this multi-hypothesis
test as a linear integer optimization program [10–15] in
order to find the set of hierarchical relationship classes,
best matching the observed SK andDK phenotypes. Based
on the detected set of hierarchical relationship classes, the
set of edges of the DAG which reflects the interactions
among the genes can be computed. Furthermore, we pro-
pose the GI-GENIE program where we advance the pro-
posed GENIE program by incorporating GI-profile data,
e.g., GI-profile data based on Pearson correlation of the
observed SK and DK phenotypes, into the DAG detection
procedure. Due to incomplete knowledge about the
true dependencies among the very most sets of genes,
i.e., the true DAG of a set of genes with respect to
a specific cell function is unknown or only partially
known for almost all sets of genes irrespectively of

the cell function under study, there is a strong inter-
est in the genomics research community in statistically
reliable statements about the topology of the DAGs
underlying large sets of genes, i.e., for the empirical
probability of a pair of genes to interact with each
other. Towards this aim, we propose a sequential tech-
nique based on the GENIE/GI-GENIE algorithms that
yields statistically significant statements about the inter-
actions among genes from a large set of genes under
study.
This paper is organized as follows. We first summa-

rize the biological system model of [2] in Section 2,
and then, we present in Section 3 the GENIE program
for detecting the set of hierarchical relationship classes,
which represents a valid DAG and matches the DK mea-
surements best. In Section 4, we extend the GENIE pro-
gram with GI-profile data (GI-GENIE). In Section 5, we
present our scalability approach in order to obtain statis-
tically significant results for large sets of genes. Following
Section 5, we present results for simulated data which
demonstrate the performance of the GENIE and the GI-
GENIE methods in Section 6. Furthermore, in Section 6,
we display real data results for the scalability approach
described in Section 5. Finally, we summarize in Section 7
the key parts of this paper and give a brief outlook on
future work.

2 Systemmodel
In this section, we provide a mathematical description of
a DAG as well as its biological implications. Furthermore,
we introduce the common biological terms and provide
a compact description of the genetic interaction model
of [2] including simple explanations on how to read and
interpret a DAG.

2.1 Graph properties of a DAG
According to [16], a graph A = (V(A), E(A)) is well
defined by a set of nodes V(A) = {a1, a2, ..., aA} and
a set of edges E(A) = {{a1, aA, } , {a2, aA, } , ..., {aA, a1, }}
where

{
ai, aj,

}
for ai, aj ∈ V(A) denotes a directed

edge from ai to aj and cardinality |V(A)| = A denotes
the number of elements of set V(A). The operators
V(·) and E(·) applied to graph A yield the set of
nodes V(A) and the set of edges E(A) respectively. We
mostly address sets V(A) and E(A) by GA and EA,
respectively, for the sake of notational convenience, i.e.,
A = (GA, EA). Assume that there is a path P from
node ai ∈ GA to node aj ∈ GA in graph A, i.e.,
a directed connection from node ai ∈ GA to node
aj ∈ GA. Then, path P is described by the concate-
nation of nodes being passed through on the way from
node ai ∈ GA to node aj ∈ GA, i.e., P = ai...aj
and V(P) = {

ai, ..., aj
}

denotes the set of nodes of
path P [16].
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The functional dependencies among a set of genes
G = {

g1, ..., gG
}
, with G = |G| elements, for a given

cell process and specie can be characterized by a genetic
interaction map (GI map,[17–20]) which is essentially
a DAG with a common root node, i.e., the reporter
level R, [21]. In particular, an arbitrary DAG D can be
described as a graph D = (GD , ED) with the set of
nodes GD = {G ∪ R} and the set of directed edges
ED = {{

gi, gj
}
, ...,

{
gj, gl

}}
. As the genetic interactions

can only be observed through the reporter, all edges
are always orientated in such a way that each path
parting from any arbitrary gene gi ∈ G always ter-
minates in the root node R and any gene appears on
the path at most once, i.e., there exist no cycles in the
graph. Hence, the DAG D is always connected via its
root node R. For the sake of notational convenience,
in most cases, we write gene i when addressing gene
gi, [21]. The reporter node R is an artificial node, i.e.,
not a gene, in the concept of a DAG and represents
the measured phenotype of the specific cell process
under study.
To provide a better understanding of the information

encoded in a DAG, we state a simple example, which
is similar to the one in [21], based on DAG D0 dis-
played in Fig. 1. In D0, there exists an direct edge from
gene i0 to gene j0, i.e.,

{
i0, j0

} ∈ ED0 , which indicates
that the activity of gene i0 controls the activity of gene
j0. Hence, gene i0 only affects the phenotype via gene
j0 and not directly. We emphasize that in this model,
the existence of edge

{
i0, j0

}
in the DAG only describes

the hierarchical functional dependency between genes
i0 and j0 and not the quantitative effect of gene i0 on
gene j0.

Fig. 1 DAGD0 of 13 genes and root node R

2.2 Biological interaction model
Let us denote R(i) ∈ R as the phenotype for a single
gene i ∈ G functionally disabled. In the same way, we
define the phenotype for the DK of genes i, j ∈ G as
R(i, j) ∈ R. Let the datasets Ri = {R(i, 1), ...,R(i,G)}
and Rj = {

R(j, 1), ...,R(j,G)
}
contain all DK phenotypes

involving genes i, j ∈ G. The GI-profile data ρ(i, j) for
genes i, j ∈ G can be computed as the Pearson corre-
lation between the samples of the datasets Ri and Rj,
respectively. We remark that the GI-profile data ρ(i, j)
does not have to be separately computed as the Pear-
son correlation of Ri and Rj, respectively. It is com-
monly extracted from a database where a priori knowl-
edge about the set of genes under study, i.e., G, is stored.
Since the gene pairs i, j and j, i are identical, it is suf-
ficient to consider only gene pairs i, j ∈ G : j >

i. Throughout this paper, we mostly omit the speci-
fication that j is greater than i for notational conve-
nience. In genomics research, it is a common assump-
tion that if there is an edge between two genes i, j
in DAG D, i.e., there is an interaction between genes
i, j in DAG D, then the GI-profile ρ(i, j) is very likely
to be high. Furthermore, according to [2], we assume
that each pair of genes i, j belongs to exactly one out
of five hierarchical relationship classes that are charac-
terized in Fig. 2. The hierarchical relationship classes
k ∈ K = {1, ..., 5} are defined according to the model
μk(i, j) in which the single-knockout phenotypes R(i)
and R(j) are related with the DK phenotype R(i, j). If
the gene pair i, j belongs to the hierarchical relation-
ship class k, then the observed DK phenotype R(i, j) is
described by the model μk(i, j) provided in Fig. 2. We
remark that the five hierarchical dependency graphs in
Fig. 2 do not reflect the absolute adjacency relations,
but the hierarchical relations between genes i, j in DAG
D. Hence, given that two genes i, j of DAG D are in
class k, we cannot conclude that genes i, j are directly
arranged in DAG D as displayed by the depiction of
class k in Fig. 2. This follows from the fact that the
description of the hierarchical relationship classes pro-
vided in Fig. 2 only contains relative topology information
about two genes i, j in DAG D. In the following and
in addition to [2], we provide, for clarity of presenta-
tion, a formal description of the hierarchical relationship
classes depicted in Fig. 2 using a graph theoretical rep-
resentation. Assume that there are I paths Pi,τ , forτ ∈
{1, ..., I}, from gene i to the reporter node R in DAG D
and the set Pi containing all such paths is defined as
Pi = {

Pi,1, ..., Pi,I
}
. Furthermore, set Pj = {

Pj,1, ..., Pj,J
}

contains all J paths from gene j to the reporter node
R in DAG D. Given gene pair i, j in DAG D, then
pair i, j belongs to the hierarchical relationship class
k ∈ K if and only if condition Ck as defined below
is satisfied:
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Fig. 2 Possible hierarchical relationship classes between two arbitrary genes i, j of DAGD according to [2]

C1 :
∀ Pi,τ ∈ Pi : j ∈ V(Pi,τ )

(1a)
C2 :

∀ Pj,τ ∈ Pj : i ∈ V(Pj,τ )
(1b)

C3 :
(∀ Pi,τ ∈ Pi : j /∈ V(Pi,τ )

) ∧

(∀ Pj,τ̃ ∈ Pj : i /∈ V(Pj,τ̃ )
)

(1c)
C4 :

(∃ Pi,τ ∈ Pi : j /∈ V(Pi,τ )
) ∧

(∃ Pi,τ ∈ Pi, Pj,τ̃ ∈ Pj : V(Pj,τ̃ ) ⊂ V(Pi,τ )
)

(1d)
C5 :

(∃ Pj,τ̃ ∈ Pj : i /∈ V(Pj,τ̃ )
)∧

(∃ Pi,τ ∈ Pi, Pj,τ̃ ∈ Pj : V(Pi,τ ) ⊂ V(Pj,τ̃ )
)

(1e)

As stated in condition C1 in (1a), two genes i, j in DAG
D belong to the hierarchical relationship class k = 1, if
all paths from gene i to the reporter node R pass through
gene j. Hence, gene j is always an element of the set of
nodes of each path Pi,τ ∈ Pi from gene i to the reporter
node R, i.e., j ∈ V(Pi,τ ) for all paths Pi,τ from gene i to the
reporter node R. With the same line of argument as used
in (1a), two genes i, j in DAG D belong to the hierarchical
relationship class k = 2 if condition C2 in (1b) is satisfied.
Two genes i, j in DAG D belong to the hierarchical rela-
tionship class k = 3 and are considered to be independent
from each other if condition C3 in (1c) is satisfied which
states that there is no path Pi,τ from gene i to the reporter
node R that passes through gene j as well as there is no
path Pj,τ̃ from gene j to the reporter node R that passes
through gene i. As stated in (1d), two genes i, j in DAG D

belong to the hierarchical relationship class k = 4 if there
is at least one path Pi,τ from gene i to the reporter node R
which does not pass through gene j as well as for all paths
Pj,τ̃ ∈ Pj, there is always a path Pi,τ ∈ Pi that is a super-
path of the respective Pj,τ̃ ∈ Pj. With the same line of
argument as used in (1d), two genes i, j in DAG D belong
to the hierarchical relationship class k = 5 if condition C5
in (1e) is satisfied.

2.3 Class coupling—example
To illustrate this, let us consider the example DAG D0 of
Fig. 1. All paths from gene i0 to node R pass through gene
j0, i.e., they are in a linear pathway with gene i0 upwards
of gene j0. Thus, the pair of genes i0, j0 belongs to class
k = 1. Note that with the same line of argument, we
conclude that also genes i0 and l0 belong to relationship
class k = 1. Since all paths from gene i0 to the reporter
level R do not pass through gene t0 and all paths from
gene t0 to the reporter level do not pass through gene i0,
genes i0 and t0 belong to the hierarchical relationship class
k = 3 as given in Fig. 2, which states that genes i0 and
t0 are independent of each other and the DK phenotype
amounts to R(i0, t0) = μ3(i0, t0). Finally, let us investigate
the hierarchical relation between genes t0 and n0 in DAG
D0. Obviously, gene t0 has (at least) one path to node R
which does not pass through gene n0, i.e., genes only hav-
ing paths to R that do not pass through gene n0 do not
affect the activity of gene n0. Since there is (at least) one
other path from gene t0 to R passing through gene n0, we
can reason that genes t0 and n0 belong to class k = 4.
Generally, there are strong implications among the hierar-
chical relationship classes of [2], i.e., if some pairs belong
to a specific class, then this has strong implications for all
other pairs. Let us consider the case that DAGD0 was not
known and only the hierarchical relationship classes for
genes i0 and j0, i.e., genes i0 and j0 belong to class k = 1, as
well as the hierarchical relationship class for genes i0 and
g0, i.e., genes i0 and g0 belong to class k = 1, were avail-
able. By definition of the hierarchical dependency graphs
in Fig. 2 and the assumptions that genes i0 and j0 belong
to class k = 1 as well as that genes i0 and g0 belong to



Nikolay et al. EURASIP Journal on Bioinformatics and Systems Biology  (2017) 2017:10 Page 5 of 16

class k = 1, we conclude that all paths from gene i0 to R
pass through genes j0 and g0. Thus, either all paths from
gene g0 to R pass through gene j0 or all paths from gene j0
to R pass through gene g0. Consequently, genes j0 and g0
either belong to the hierarchical relationship class k = 1,
or k = 2.
As we have emphazised by the example above, generally,

if the hierarchical relationship class is known for two arbi-
trary genes i, j as well as for another pair i, l ∈ G : l > i,
then this has strong logical implications on the hierar-
chical relationship classes genes j, l ∈ G : l > j can
belong to. Since we can interpret the classification of the
pairs of genes i, j, based on their observed SK and DK phe-
notypes R(i),R(j) and R(i, j), respectively, to exactly one
out of the five hierarchical relationship classes as a cou-
pled multi-hypothesis test, we address this problem in
Section 3 by a linear integer optimization program. The
proposed linear integer optimization program identifies
themost consistent set of hierarchical relationship classes,
i.e., the set of hierarchical relationship classes that repre-
sents a valid DAG andmatches best the DKmeasurements
with respect to the logical coupling between the classes.
Furthermore, in Section 4, we extend the GENIE program
proposed in Section 3 by incorporating GI-profile data
in order to jointly detect the most consistent set of hier-
archical relationship classes and the corresponding DAG
topology.

3 GENIE algorithm
In this section, we formulate the problem of classifying
the gene pairs i, j into the classes of hierarchical relation-
ships based on the observed SK and DK phenotype values
as a linear integer optimization program. Furthermore,
we translate the logical implications among the hierarchi-
cal relationship classes into constraints that ensure that
the detected set of hierarchical relationship classes repre-
sents a valid graph. That is, the detected set of hierarchical
relationship classes represents a graph which is a DAG
as defined in Section 2. Finally, we propose a policy to
derive an estimate ÊD of the true set of edges ED of DAG
D based on the detected set of hierarchical relationship
classes.

3.1 Hierarchical relationship class detection
In order to quantify the mismatch between the measured
DK phenotypes R(i, j) and the phenotype model μk(i, j) of
class k ∈ K according to Fig. 2, under the hypothesis that
the gene pairs i, j belong to class k given their respective
SK values, we propose a simple quadratic score [2, 21], as
given in Eq. (2)

sk(i, j) = (
R(i, j) − μk(i, j)

)2 , k ∈ K
∀i, j :∈ G : j > i (2)

Let us define the following class-selection variables1

αk(i, j) =
{
1 if i, j are in class k
0 else

k ∈ K, ∀i, j :∈ G : j > i (3)

We remark that every DAG D can be represented by
a set of hierarchical relationship classes which directly
corresponds to a set of class-selection variables AD =⋃

∀i,j∈G:j>i

{
αD
1 (i, j), ...,αD

5 (i, j)
}
. The GENIE algorithm of

classifying the gene pairs i, j into the set of hierarchi-
cal relationship classes that represents a valid DAG and
matches the observed SK and DK phenotypes best can be
formulated as

OGENIE :

min{αk(i,j)}
G∑

i=1

G∑

j=i+1

⎛

⎝
|K|∑

k=1
sk(i, j)αk(i, j)

⎞

⎠ (4a)

s. t. αk(i, j) ∈ {0, 1} ∀k ∈ K,
∀i, j ∈ G : j > i (4b)

|K|∑

k=1
αk(i, j) = 1,

∀i, j ∈ G : j > i (4c)

L =⇒ additional topology
constraints (4d)

where AOGENIE = ⋃

∀i,j∈G:j>i

{
α
OGENIE
1 (i, j), ...,

α
OGENIE
5 (i, j)

}
denotes the solution of program OGENIE in

(4) and the set of best matching selection variablesAOGENIE

corresponds to the most consistent pattern of hierarchi-
cal relationship classes. Problem OGENIE in (4) is a linear
integer program which can be solved efficiently by BB
methods [22–29]. The objective of problem OGENIE is to
minimize the overall mismatch in classifying each gene
pair i, j to one out of five hierarchical relationship classes.
The constraints in (4b) reflect the binary nature of the
class-selection variables αk(i, j), ∀k ∈ K, while (4c) repre-
sents a multiple choice constraint to enforce that the gene
pairs i, j are only classified to one out of the five hierar-
chical relationship classes. The set L in (4d) is comprised
of additional constraints to ensure that the detected set
of selection variables AOGENIE always represents a valid



Nikolay et al. EURASIP Journal on Bioinformatics and Systems Biology  (2017) 2017:10 Page 6 of 16

graph, i.e., a DAG. In the following, we exemplarily derive
topology constraints in set L. In order to identify the
numerous logical dependencies among the class-selection
variables αk(i, j), k ∈ K for all i, j ∈ G : j > i, we pro-
ceed in the following way. We first fix the assumption
that genes i, j belong to class k = 1, i.e., α1(i, j) = 1.
Further, we assume that genes i, l ∈ G : l > i belong
to class k′ , i.e., αk′ (i, l) = 1. Then, we derive the set of
classes K′′ that genes j, l ∈ G : l > j can belong to
under the assumptions made. In the following, we have
formulated the logical dependencies among the selection
variables for α1(i, j) = 1, i.e., the case that gene i is lin-
early upstream of gene j, as linear integer inequalities
defined in constraints (5a)–(5e) and summarize them as
set L1

L1 =
{

α1(j, l) + α2(j, l) ≥ α1(i, j) + α1(i, l) − 1 (5a)
α2(j, l) ≥ α1(i, j) + α2(i, l) − 1 (5b)
α2(j, l) + α3(j, l) + α5(j, l) ≥
α1(i, j) + α3(i, l) − 1 (5c)
α2(j, l) + α4(j, l) ≥ α1(i, j) + α4(i, l) − 1 (5d)
α5(j, l) + α2(j, l) ≥ α1(i, j) + α5(i, l) − 1 (5e)
}

∀i, j, l ∈ G : l > j > i

where constraints (5a)–(5e) are linear after the continuous
relaxation of the selection variables αk(i, j). To explain the
origin and the functionality of the constraints in L1, let us
further define a sub-genetic interaction map (SMAP) S ,
[21], as given in Fig. 3 according to the following definition
where we adopt the graph notation of [16]:

Definition 1 Given a non-empty set of edges Ein and a
non-empty set of edges Eout, graph S = (GS , ES), with set

Fig. 3 Example SMAPS

of nodes GS and set of edges ES , is a SMAP if the follow-
ing conditions are fulfilled: (i) the graph S is acyclic and
directed and (ii) there are ∃ein ∈ Ein and eout ∈ Eout such
that each path P through graph S incides S via egde ein
and leaves graph S via edge eout.

DAG D1, as displayed in Fig. 4, consists of genes i, j and
SMAPs S1 and S2. Obviously, genes i, j belong to class k =
1, i.e., α1(i, j) = 1. Furthermore, all genes l ∈ GD1 \ {R} :
l > j > i for which α1(i, l) = 1 must be either located in
SMAP S1 or S2. Thus, it follows from DAG D1 in Fig. 4
that the gene pair j, l is either in hierarchical relationship
class k = 1 or k = 2, i.e., α1(j, l) = 1 or α2(j, l) = 1.
This logical implication is directly reflected by con-

straint (5a). Given α1(i, j) = 1 and α1(i, l) = 1, the
right-hand side (RHS) of (5a) amounts to 1. In this case
also, the left-hand side (LHS) of (5a) becomes 1 to fulfill
the inequality (5a). Thus, either α1(j, l) = 1 or α2(j, l) = 1.
Reversely, assume that α1(i, j) = 1 and α1(i, l) = 1 does
not hold, and then, the RHS of (5a) is less than 1, i.e.,
0 or −1, while the LHS of (5a) is always greater than
0. Hence, constraint (5a) is fulfilled irrespectively of the
choice of αk(j, l), i.e., constraint (5a) enforces no logical
implications.
Similarly for DAG D2 in Fig. 4, it is obvious that genes

i, j belong to the hierarchical relationship class k = 1, i.e.,
α1(i, j) = 1. All genes l ∈ GD2 \ {R} : l > j > i which are
in a linear pathway upstream of gene i, i.e., α2(i, l) = 1,
must be located in SMAP S3. Hence, it directly follows
from DAGD2 that also, gene lmust be in a linear pathway
upstream of gene j, i.e., α2(j, l) = 1. This logical impli-
cation is compactly represented in constraint (5b). Under
the assumption that α1(i, j) = 1 and α2(i, l) = 1, the RHS
of (5b) amounts to 1 enforcing α2(j, l) = 1, so that the LHS
of (5b) equals the RHS and the inequality in (5b) is ful-
filled. Reversely, assume that α2(i, l) = 0, then the RHS of
(5b) is less than 1 and hence the LHS of (5b) is always big-
ger than or equal to the RHS irrespectively of the choice
of αk(j, l), i.e., constraint (5a) enforces no logical impli-
cations. We can proceed in the same fashion to explain
constraints (5c)–(5e) based on DAGsD3 toD5 as given in
Fig. 4, respectively. Note that the DAGs D1 to D5 are suf-
ficient illustrations of Eqs. (5a)– (5e) in order to derive all
logical implications for the case that genes i, j are in class 1,
i.e., α1(i, j) = 1. In the case of DAGD1, for instance, there
can be other DAGs than DAG D1 indeed where genes i, j
are in class 1 and genes i, l are in class 1, i.e. α1(i, j) = 1
and α1(i, l) = 1. However, DAGD1 contains all the neces-
sary information in order to derive the logical implications
for gene pair j, l, given that α1(i, j) = 1 and α1(i, l) = 1.
The same holds for DAGs D2 to D5. Furthermore, with
the same line of argument, we can derive the sets Lk for
k ∈ K \ 1 which reflect the logical implications among the
selection variables under the assumptions that αk(i, j) = 1
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Fig. 4 Schematically reduced DAGsD1 toD5 corresponding to Eqs. (5a)–(5e), respectively

for k ∈ K \ 1. However, due to space limitations, we omit
the derivation of the full set of logical implications at this
point and refer the interested reader to [30] where we will
provide the full set of topology constraints L as well as
further supplementary material. The full set of topology
constraints L in (4d) can be computed as

L =
|K|⋃

k=1
{Lk} . (6)

Finally, a considerable advantage of the presented algo-
rithm is its ability to incorporate prior knowledge into the
classification of the gene pairs i, j to the most consistent
hierarchical relationship classes. Assume that it is known
from existing experimental results that two specific genes
i0, j0 ∈ G : j0 > i0 do not interact with each other.
Then, we can easily incorporate this prior knowledge into
program OGENIE in (4) by adding Eq. (7) as defined below

α3(i0, j0) = 1 (7)

as a topology constraint to program OGENIE. This prop-
erty is very valuable since it allows the GENIE algorithm
to take advantage of existing results in genetic interaction
research to improve the reliability of the classification.

3.2 Edge computation
Based on the detected set of selection variables AOGENIE

which corresponds to the most consistent pattern of hier-
archical relationship classes given the observed SK and
DK phenotypes, an estimate EGENIE of the true set of edges
ED of DAG D can be computed. It can be theoretically
proven that the representation of an arbitrary DAG D by
its corresponding set of hierarchical relationship classes
is not unique. AD the set of selection variables which
directly corresponds to the hierarchical relationship class
pattern of DAG D represents not only the true DAG D

but also a set of similar DAGs which have minorly differ-
ent sets of edges compared to the true DAG D. Assume
we are only given that αD

4 (i, j) = 1 for two arbitrary genes
i, j of DAG D, then we suffer an information loss on the
number of paths from gene i to the reporter node R which
are independent of gene j. Similarly, given that αD

5 (i, j) = 1
for two arbitrary genes i, j ∈ G : j > i of DAG D, we suf-
fer an information loss on the number of paths from gene
j to the reporter node R which are independent of gene
i. Hence, this information loss yields ambiguities in com-
puting the set of edges ED of DAG D based on the AD . In
order to clarify the origin of the ambiguities further, let us
turn to a simple example. Given DAG Da = {

GDa , EDa

}

as displayed on the LHS of Fig. 5 and the corresponding
set of hierarchical relationship classes represented by the
corresponding set of selection variables ADa . Note that
α
Da
4 (1, 2) = α

Da
4 (1, 3) = α

Da
4 (1, 4) = 1 due to edge

e0 ∈ EDa and α
Da
1 (1, 5) = 1. Now, assume that we want

to compute the topology of DAG Da, i.e., the set of edges
EDa , based onADa . DAG D̂a displayed on the RHS of Fig. 5
shows the estimated topology of DAG Da based on ADa .
It can be shown that the black edges of DAG D̂a are nec-
essary such that DAG D̂a is represented by ADa . Edges
e1 and e2 in DAG D̂a are optional in a sense that their
existence has no effect on set ADa . Edges e1 and e2 create
two paths from gene g1 to the reporter node R which are
independent of gene g2 and gene g3, respectively. How-
ever, due to edge e0, gene g1 already has a path to the
reporter node R which is independent of genes g2 and g3.
Since α

Da
4 (1, 2) = α

Da
4 (1, 3) = α

Da
4 (1, 4) = 1 do not

contain information on the number of paths from gene g1
to R that are independent of g2, g3 and g4, edges e1 and
e2 do not affect the pattern of hierarchical relationship
classes representing DAG Da, i.e., ADa , and hence, this
yields ambiguities in computing the topology of DAG Da
based on its corresponding set of selection variables ADa .
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Fig. 5 Left: Original DAGDa with corresponding set of hierarchical
relationship classes ADa . Right: Reconstruction D̂a of DAGDa based
on ADa

Since it is a common assumption in genomics research
that GI maps, i.e., DAGs, are not overly dense but rather
sparse, we propose a policy which computes the sparsest
DAG topology based on the detected pattern of hierar-
chical relationship classes. Given the detected pattern of
hierarchical relationship classes of a DAG D, i.e., ÂD =⋃

∀i,j∈G:j>i

{
α̂D
1 (i, j), ..., α̂D

5 (i, j)
}
, we compute an estimate ÊD

of the true topology set ED of DAG D according to the
policy depicted in Table 1 where we make use of the sym-
metry properties α̂D

1 (i, j) = α̂D
2 (j, i), α̂D

2 (i, j) = α̂D
1 (j, i),

α̂D
3 (i, j) = α̂D

3 (j, i), α̂D
4 (i, j) = α̂D

5 (j, i), and α̂D
5 (i, j) =

α̂D
4 (j, i). Note that we redundantly expand the set of

detected class-selection variables α̂k(i, j) from all pairs
i, j ∈ G : j > i to all pairs i, j ∈ G in order to obtain a com-
pact formulation of the mutually exclusive conditions E1
to E4 as stated in Table 1.
Assume that either condition E1 or condition E2 is

fulfilled, then we conclude that there is an edge from
gene i to gene j in DAG D. Given that either condi-
tion E3 or condition E4 is fulfilled, we conclude that
there exists an edge from gene j to gene i in DAG
D. We remark that there cannot be an edge between
two genes i, j if they are independent of each other, i.e.,
α̂D
3 (i, j) = 1.
As described by E1, there is an edge from gene i to gene

j in DAG D, if gene i is linearly upstream of gene j, i.e.,
α̂D
1 (i, j) = 1, and there is no gene l in DAG D that is

linearly downstream of gene i, i.e., α̂D
1 (i, l) = 1, and lin-

early upstream of gene j, i.e., α̂D
2 (j, l) = 1. According to

condition E2, there is an edge from gene i to gene j in
DAG D, if gene i is upstream of gene j with at least one
path from gene i to R which is independent of gene j, and
furthermore, there is no gene l in DAG D that is either
linearly downstream of gene i or downstream of gene i

Table 1 Proposed sparse edge detection policy

Detection policy: compute the sparsest DAG in line with ÂD

E1: (
α̂D
1 (i, j) = 1

)∧ (
�l ∈ G \ (i, j) :

α̂D
1 (i, l) = 1

∧
α̂D
2 (j, l) = 1

)

• =⇒ there is an edge in DAGD from gene i to gene j, i.e., {i, j}
E2: (

α̂D
4 (i, j) = 1

)∧ (
�l ∈ G \ (i, j) :

(
α̂D
1 (i, l) = 1

∨
α̂D
4 (i, l) = 1

) ∧

(
α̂D
2 (j, l) = 1

∨
α̂D
5 (j, l) = 1

))

• =⇒ there is an edge in DAGD from gene i to gene j, i.e., {i, j}
E3: (

α̂D
2 (i, j) = 1

)∧ (
�l ∈ G \ (i, j) :

α̂D
2 (i, l) = 1

∧
α̂D
1 (j, l) = 1

)

• =⇒ there is an edge in DAGD from gene j to gene i, i.e., {j, i}
E4: (

α̂D
5 (i, j) = 1

)∧ (
�l ∈ G \ (i, j) :

(
α̂D
2 (i, l) = 1

∨
α̂D
5 (i, l) = 1

) ∧

(
α̂D
1 (j, l) = 1

∨
α̂D
4 (j, l) = 1

))

• =⇒ there is an edge in DAGD from gene j to gene i, i.e.,{j, i}

with gene i having at least one path to R that is indepen-
dent of l and neither gene l is linearly upstream of gene
j nor gene l is upstream of gene j with an independent
path to R. In order to elucidate the effect of condition E2
onto the edge computation, we briefly turn to DAG D̂a
in Fig. 5. Condition E2 ensures that the optional edges e1
and e2 are not detected but only the necessary edges dis-
played in black color. We remark that conditions E3 and
E4 can be elucidated by the same line of argument as used
for conditions E1 and E2, but due to space limitations, we
omit a detailed explanation at this point. Finally, we pro-
pose a condition from which all reporter node edges, i.e,
all edges that connect gene i ∈ G with reporter node R
in DAG D, can be computed. Based on the detected set
of hierarchical relationship classes, i.e., ÂD , we follow our
policy of computing the necessary edges only. For clarity
of presentation and notational compactness, we define set
Mi as

Mi = {
l ∈ G \ i| α̂D

4 (i, l) = 1
}

i = 1, ...,G (8)

containing all genes l ∈ G which are in class k = 4 with
gene i ∈ G, i.e., α̂D

4 (i, l) = 1. Furthermore, we define set
M′

i as
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M′
i =

{
l ∈ Mi| ∃l̃ ∈ Mi \ l : α̂D

3 (l, l̃) = 1
}

i = 1, ...,G (9)

which contains all genes l of set Mi that are independent
of at least one other gene of set Mi. Based on sets Mi
and M′

i, we formulate condition ER as stated in Table 2.
We conclude that there is an edge from gene i to reporter
node R in DAG D, if condition ER is fulfilled. Given that
gene i is linearly upstream of at least a single gene l, i.e.,
α̂D
1 (i, l) = 1, there cannot exist an edge from gene i to

reporter node R in DAGD, since all paths from gene i to R
pass through at least one other gene l. Conversely, if there
is no such gene l that α̂D

1 (i, l) = 1, then the LHS of ER as
given in Table 2 is fulfilled. The RHS of ER accounts for
our policy of detecting sparse DAGs only and is fulfilled
if either Mi, M

′
i, or Mi and M′

i are empty. Note that
given Mi = ∅, it follows that M′

i = ∅ as well, whereas
the opposite is not true. In order to explain the effect of
the RHS of condition ER in an intuitive manner, let us
turn to DAG DR as displayed in Fig. 6. Assume that we
are given the pattern of hierarchical relationship classes
that corresponds to DAG DR, i.e., ADR , and we want to
compute all reporter node edges based on ADR , i.e., all
edges that directly connect a gene in DAG DR with the
reporter node R. Note that α

DR
1 (2, 3) = 1, αDR

5 (2, 4) = 1,
α
DR
4 (3, 4) = 1, and α

DR
4 (1, l) = 1 ∀l ∈ GDR \ {

g1,R
}
. It

can be shown that gene g3 fulfills the LHS of ER, i.e., there
is no gene which is linearly downstream of g3, and fur-
thermore, M3 = {

g4
}
and M′

3 = ∅. Hence, condition
ER is fulfilled and edge en connecting g3 and R is com-
puted in DAG D̂R that is the reconstruction of DAG DR
based onADR . Furthermore, for setADR , the edge en in the
reconstructed DAG D̂R is necessary, since α

DR
1 (2, 3) = 1,

α
DR
5 (2, 4) = 1, and α

DR
4 (3, 4) = 1. In contrast to en,

edge eo is not necessary for ADR to represent D̂R, since
α
DR
4 (1, l) = 1 ∀l ∈ GDR \ {

g1,R
}
irrespectively of edge eo.

Hence, eo is not detected, sinceM1 �= ∅ andM′
1 �= ∅.

We obtain an estimate EGENIE of the true set of edges
ED of DAG D by setting ÂD = AOGENIE and evaluating
conditions E1 to E4 and condition ER as stated in Tables 1
and 2, respectively.

4 GI-GENIE algorithm
In this section, we present the proposed GI-GENIE algo-
rithm which jointly formulates the gene pair classification

Table 2 Proposed reporter node edge detection policy

ER : (
�l : α̂D

1 (i, l) = 1
)

︸ ︷︷ ︸
=LHS

∧ (
Mi = ∅

∨
M′

i = ∅
)

︸ ︷︷ ︸
=RHS

Fig. 6 Example DAGDR to elucidate the functionality of the RHS of
condition ER of Table 2

and the corresponding DAG topology estimation. Let us
define the following edge-selection variables

β(i, j) =
{
1 ∃ edge between i, j
0 no edge

∀i, j ∈ G : j > i (10)

where β(i, j) = 1 denotes that there is an edge
between genes i, j in DAG D and β(i, j) = 0 denotes
that there exists no edge between genes i and j. Note
that unlike αk(i, j) = 1 for k ∈ K, β(i, j) = 1
does not capture directionality information about the
graph topology, i.e., β(i, j) = 1 states that there is
an edge between genes i, j in DAG D without spec-
ifying the hierarchy among both genes. The topol-
ogy ED of any DAG D can be represented by the
corresponding set of class-selection variables AD =⋃

i,j

{
αD
1 (i, j), ...,αD

5 (i, j)
}
together with the corresponding

set of undirected edges
{
β(i, j)

}
for all i, j :∈ G :

j > i. The set
{
β(i, j)

}
can be viewed as the undi-

rected “skeleton” of the DAG that is represented by its
corresponding set of class-selection variablesAD . The GI-
GENIE algorithm yields an estimate EGI of the true DAG
topology ED by computing sets AOGI-GENIE and

{
β̂(i, j)

}

which are estimates of the true set of class-selection
variables and edge-selection variables, AD and

{
β(i, j)

}
,

respectively. Based on SK, DK, and GI-profile data,
the proposed GI-GENIE algorithm is formulated as the
following LIP:
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OGI-GENIE :

min{αk(i,j),β(i,j),zl(i,j)}
λd

G∑

i=1

G∑

j=i+1

⎛

⎝
|K|∑

k=1
sk(i, j)αk(i, j)

⎞

⎠

− λc

G∑

i=1

G∑

j=i+1
ρ(i, j)β(i, j)

+ λp

G∑

i=1

G∑

j=i+1
β(i, j) (11a)

s. t.: Eqs. (4b) − (4d) (11b)
β(i, j) ∈ {0, 1}
∀i, j ∈ G : j > i (11c)
zl(i, j) ∈ {0, 1} ∀l ∈ G \ {

i, j
}
,

∀i, j ∈ G : j > i (11d)
1 − α3(i, j) ≥ β(i, j)
∀i, j ∈ G : j > i (11e)
Lc =⇒ additional topology
constraints (11f)

|G| − 2 + β(i, j) ≥
1 +

∑

l∈G\{i,j}
zl(i, j) (11g)

∀i, j ∈ G : j > i

where the scalars λd, λs, λc, and λp are non-negative
weighting constants to balance the impact of the SK
and DK measurements and the GI-profile data, respec-
tively, on the estimates. In particular, the parame-
ter λd is used for dual purpose: (i) to scale the
domain of the knockout scores sk(i, j) to the range
[ 0, ..., 1] which is comparable to range of the corre-
lation data ρ(i, j) and (ii) to trade-off the impact of
the knockout scores sk(i, j) on the estimation outcome.
The parameters λc and λp are in the interval [ 0, 1]
where λc ≥ λp. The GI-profile (GIP) term is given
by

−λc

G∑

i=1

G∑

j=i+1
ρ(i, j)β(i, j) + λp

G∑

i=1

G∑

j=i+1
β(i, j). (12)

The quotient of λc
λp

defines the threshold for reward of
the GI-profile (GIP) term in Eq. (12), where setting the
edge selection variable β(i, j) = 1 is rewarded if the cor-
responding GI-profile measurement ρ(i, j) is above the
quotient λc

λp
.

The auxiliary variables zl(i, j)∀i, j, l ∈ G : j > i, l �= i, l �= j
are generally necessary to ensure that the information
about the topology of DAG D, which is encoded in the

pattern of selection variables AOGI-GENIE detected by pro-
gram OGI-GENIE, is not contradicting with the set of edge
selection variables

{
β̂(i, j)

}
∀i, j ∈ G : j > i detected by

program OGI-GENIE. In particular, given that the detected
pattern of selection variables AOGI-GENIE enforces that there
is an edge between genes i, j in DAG D, then the auxiliary
variables ensure that the corresponding edge selection
variable indicates that there is an edge between genes i, j,
i.e., β̂(i, j) = 1. Furthermore, given that the detected pat-
tern of selection variables AOGI-GENIE enforces that there is
no edge between genes i, j in DAG D, then the auxiliary
variables ensure that the corresponding edge selection
variable indicates that there is no edge between genes
i, j, i.e., β̂(i, j) = 0. On the contrary, assume that the
detected edge selection variables enforce that there is an
edge between genes i, j in DAGD, i.e., β̂(i, j) = 1, then the
zl(i, j) ensure that the detected pattern of selection vari-
ables AOGI-GENIE must fulfill one of the conditions stated in
Table 1. Consequently, given that the detected edge selec-
tion variables enforce that there is no edge between genes
i, j in DAG D, i.e., β̂(i, j) = 0, then the zl(i, j) ensure that
the detected pattern of selection variables AOGI-GENIE does
not fulfill any of the conditions stated in Table 1.
Furthermore, let the auxiliary parameters

q(i, j) =
{
1 ρ(i, j) ≥ λc

λp

0 ρ(i, j) < λc
λp

∀ i, j ∈ G : j > i (13)

describe the detection of the edges of DAG D based on
GI-profile data only, where q(i, j) = 1 denotes that there
is an edge between genes i, j and q(i, j) = 0 denotes that
there is no edge between genes i, j. Since any pattern of
hierarchical relationship classes implies a specific set of
edges and any set of edges implies a specific pattern of
hierarchical relationship classes, there is a strong coupling
of constraints, i.e., there are strong logical implications
among the selection variables αk(i, j) and the selection
variables β(i, j); the constraints in Eqs. (11e) to (11g)
ensure that the detected hierarchical relationship classes
and the corresponding edges, i.e., the αk(i, j) and β(i, j),
are not mutually contradicting. Given that two genes i, j
in DAG D are independent, i.e., α3(i, j) = 1, there can-
not exist an edge between those genes in DAG D, i.e.,
β(i, j) = 0. This logical implication is reflected by (11e).
Set Lc in (11f) and the linear integer inequalities in (11g)
model conditions E1 to E4 of our proposed edge detection
policy as stated in Table 1. Since we do not want to redun-
dantly expand the set of selection variables αk(i, j) to all
i, j ∈ G : j �= i in order to not increase the complexity of
program OGI-GENIE, we have to consider three cases when
formulating conditions E1 to E4 of Table 1 as linear integer
inequalities, i.e., i, j, l ∈ G : l > j > i, i, j, l ∈ G : j > i > l
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and i, j, l ∈ G : j > l > i. Then, the constraints in set Lc,1

Lc,1 =
{

1 − β(i, j) ≥ α1(i, j) + α1(i, l) + α2(j, l) − 2
(14a)

1
2

(
α1(i, l) + α2(j, l)

) ≥ α1(i, j) − zl(i, j)

(14b)

1 − β(i, j) ≥ α2(i, j) + α2(i, l) + α1(j, l) − 2
1
2

(
α2(i, l) + α1(j, l)

) ≥ α2(i, j) − zl(i, j)

(14c)

1 − β(i, j) + q(i, j) ≥ α4(i, j) + α1(i, l)+
α4(i, l) + α2(j, l) + α5(j, l) − 2 (14d)
1
2

(
α1(i, l) + α4(i, l) + α2(j, l) + α5(j, l)

) ≥
α4(i, j) − zl(i, j) − q(i, j) (14e)

2 − β(i, j) − q(i, j) ≥ α4(i, j) + α1(i, l)
+ α2(j, l) + α5(j, l) − 2 (14f)
1
2

(
α1(i, l) + α2(j, l)

) ≥
α4(i, j) − zl(i, j) − 1 + q(i, j) (14g)

1 − β(i, j) + q(i, j) ≥ α5(i, j) + α2(i, l)+
α5(i, l) + α1(j, l) + α4(j, l) − 2
1
2

(
α2(i, l) + α5(i, l) + α1(j, l) + α4(j, l)

) ≥
α5(i, j) − zl(i, j) − q(i, j) (14h)

2 − β(i, j) − q(i, j) ≥ α5(i, j) + α2(i, l)
+ α5(i, l) + α1(j, l) − 2
1
2

(
α2(i, l) + α1(j, l)

) ≥
α5(i, j) − zl(i, j) − 1 + q(i, j) (14i)
}

∀i, j, l ∈ G : l > j > i

model the logical implications among the selection vari-
ables αk(i, j),αk′(i, l),αk′′(j, l), and β(i, j) for k, k′, k′′ ∈
K,∀i, j, l ∈ G : l > j > i. Together with (11g), constraints
(14a)–(14b) model condition E1 of our detection policy
taking into account the GI-profile information ρ(i, j) via
selection variables β(i, j). Assume that based on the SK
and DK phenotypes, it is most consistent that α1(i, j) =

α1(i, l) = α2(j, l) = 1 for at least one gene l in DAG D
which corresponds to condition E1 being violated. Hence,
there cannot exist an edge between genes i and j in DAG
D. In this case, the RHS of (14a) amounts to 1 which
enforces the LHS of (14a) to amount to 1 as well, i.e.,
β(i, j) = 0. Note that for α1(i, j) = α1(i, l) = α2(j, l) =
1, (14b) makes no restrictions on zl(i, j). Furthermore,
assume that for genes i, j, based on the SK and DK pheno-
types, it is most consistent that α1(i, j) = 1, but α1(i, l) and
α2(j, l) are not jointly 1 for all other genes l ∈ G : l > j > i,
i.e., α1(i, l) + α1(j, l) < 2, then there is an edge between
genes i, j in DAGD according to condition E1. In this case,
it is obvious that (14a) is always fulfilled, i.e., there are
no restrictions on β(i, j) by (14a). Since α1(i, j) = 1 and
α1(i, l) + α2(j, l) ≤ 1 for all l ∈ G : l > j > i, constraint
(14b) can only be fulfilled if zl(i, j) = 1 ∀l ∈ G : l > j > i.
Hence, this enforces β(i, j) = 1 due to constraint (11g). In
this case, constraint (14b) forces zl(i, j) = 1 ∀l ∈ G : l >

j > i. Hence, given that zl(i, j) = 1 ∀l ∈ G : l > j > i,
constraint (11g) sets β(i, j) = 1.
Given that the GI-profile data strongly supports that

there is no edge between genes i, j in DAGD, i.e., β(i, j) = 0,
and α1(i, j) = 1 is most consistent based on the SK and
DK phenotypes measured, then it follows from (11g) that
there must be at least one l ∈ G : l > j > i for which
zl(i, j) = 0. In this case, with β(i, j) = 0, α1(i, j) = 1,
and zl(i, j) = 0, the RHS of (14b) amounts to 1, forcing
the LHS of (14b) to amount to 1 as well, i.e., α1(i, l) = 1
and α2(j, l) = 1, which is together with the assumption
of α1(i, j) = 1 a combination that violates the existence
of a direct edge between genes i and j. Furthermore, note
that (14a) does not have any implications on the selec-
tion variables α1(i, j),α1(i, l), and α2(j, l) for the case that
β(i, j) = 0 and zl(i, j) = 0.
Assume that the GI-profile data strongly supports that

there is an edge between genes i, j in DAGD, i.e., β(i, j) =
1, and α1(i, j) = 1 is most consistent based on the SK
and DK phenotypes measured, then according to (14a),
there cannot be any gene l ∈ G : l > j > i for which
α1(i, l) = 1 and α2(j, l) = 1. Hence, Eq. (14b) can only be
fulfilled if zl(i, j) = 1 ∀l ∈ G : l > j > i. Thus, (11g) is
fulfilled with equality. We remark that given α1(i, j) = 1,
constraints (14c) to (14i) are always fulfilled, i.e., they do
not pose any implications among the selection variables
αk(i, j) and β(i, j). Together with (11g), the two inequalities
in (14c) model condition E3 where we can elucidate their
functionality in the same fashion as before. Constraints
(14d) to (14g) along with (11g) model a minor modifica-
tion of condition E2 where we detect not only all necessary
edges but also optional edges given that their existence
is strongly supported by the GI-profile. Given that the
existence of an edge between genes i, j in DAG D is not
strongly supported by the GI-profile, i.e., q(i, j) = 0, con-
straints (14d) to (14e) along with (11g) model condition
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E2 which only allows necessary edges to be detected and
we can elucidate their functionality in the same fashion
as in (14a) to (14b). Note that (14f) to (14g) are always
fulfilled for q(i, j) = 0, i.e., no implications among the
selection variables αk(i, j) and β(i, j) are posed. Assuming
that the existence of an edge between genes i, j in DAG
D is strongly supported by the GI-profile, i.e., q(i, j) = 1,
then the constraints in (14d) and (14e) are always fulfilled,
i.e., no implications among the selection variables αk(i, j)
and β(i, j) are posed by (14d) and (14e). However, con-
straints (14f) and (14g) pose relaxed logical implications
among the selection variables αk(i, j) and β(i, j) compared
to constraints (14d) to (14e). Hence, given that q(i, j) = 1
and α4(i, j) = 1, an edge between genes i, j in DAG D
is detected if it is allowed by the pattern of hierarchi-
cal relationship classes. Constraints (14h) to (14i) along
with (11g) model a minor modification of condition E4
where we detect not only all necessary edges but also
optional edges given that their existence is strongly sup-
ported by the GI-profile. Furthermore, the functionality
of constraints (14h) to (14i) can be explained with the
same line of argument as used to elucidate constraints
(14d) to (14g).
Denote Lc,2 and Lc,3 as the sets of topology constraints

that model the logical coupling among the selection vari-
ables αk(i, j),αk′(i, l),αk′′(j, l), and β(i, j) for k, k′, k′′ ∈ K
and i, j, l ∈ G : j > i > l and i, j, l ∈ G : j >

l > i, respectively. Then, the full set of coupled con-
straints of the selection variables αk(i, j) and β(i, j) is
given by

Lc =
3⋃

κ=1

{
Lc,κ

}
(15)

where we again refer the interested reader to [30] for
a detailed description of Lc. We obtain an estimate EGI
of the true set of edges ED of DAG D based on the
computed set of edge selection variables

{
β̂(i, j)

}
of pro-

gram OGI-GENIE where we infer the directionality of the
edges according to AOGI-GENIE . Note that all reporter node
edges are computed according to our proposed reporter
node edge detection policy as given in Table 2. Since
the reporter node is an artificial node in the concept
of a DAG, there is no GI-profile data ρ(i,R) ∀i ∈ G
and thus, no edge selection variable β(i,R) ∀i ∈ G
according to (10).

5 Sequential scalability technique
Due to the combinatorial nature of problems OGENIE and
OGI-GENIE, the GENIE algorithm and GI-GENIE algo-
rithm, respectively, cannot be applied to the data of large
sets of genes G, since the number of candidate solutions
to problems OGENIE and OGI-GENIE, respectively, grows

exponentially with the number of genes. In order to never-
theless obtain statistically significant statements about the
interactions among genes in a large set of genes G, we pro-
pose the sequential scalability (SEQSCA) technique which
is based on the GENIE algorithm and the GI-GENIE
algorithm, respectively.
In particular, we create a sequence of S subsets {Gs}S1 of

the full set of genes G, i.e., Gs ⊂ G, and ∀s ∈ {1, ..., S},
where we estimate the topology ED,s of each DAG Ds,
underlying the data of the subset of genes Gs, by the
GENIE or GI-GENIE algorithm, respectively, in order to
translate the estimated topology ED,s of DAG Ds into the
corresponding adjacency matrix Ms for each s ∈ {1, ..., S}.
Based on the computed sequence of adjacency matrices
{Ms}S1, we iteratively compute the reliability matrix M ∈
[0, 1]N×N of the full set of genes G in such a way that
each entry [M]i,j∈G describes the empirical probability of
an edge to exist between genes i, j ∈ G, i.e., the empirical
probability that genes i, j ∈ G directly interact with each
other, where a value of 0 means that there is an interac-
tion between the considered pair of genes with probability
0 and a value of 1 means that the considered pair of genes
interacts with probability 1.
In particular, in each iteration s, we consider a sub-

set Gs of size NS 
 |G| of the full set of genes G,
where each gene of Gs is selected from G without replace-
ment with equal probability. Based on the selected subset
Gs, we compute in each iteration s an estimate ED,s of
the true topology of DAG Ds, underlying the observed
data of the genes in subset Gs, by the GENIE or the GI-
GENIE algorithm, respectively. Furthermore, the topol-
ogy estimate ED,s of DAG Ds is translated into the
corresponding adjacency matrix Ms. The update of the
reliability matrix for iteration s is computed according
to Eq. (16)

[
M(s+1)

]

i,j
=

[
M(s)

]

i,j
+ [Ms]κi,κj ∀i, j ∈ Gs (16)

withM(s) being the N × N reliability matrix at iteration s,
κi ∈ {1, ...,NS} ∀i ∈ Gs, ∪iκi = {1, ...,NS} and κi < κj for all
i < j. Finally, we obtain the reliability matrixM of the full
set of genes G by normalizing each entry

[
M(S)]

i,j i, j ∈ G
by ni,j that is the frequency of how often detecting an
edge between genes i and j has been considered. Note
that the proposed SEQSCA technique does not intend
to yield valid DAGs but to provide statistical statements
to which empirical probability two genes interact with
each other.
In Table 3, we have summarized the SEQSCA technique.

Finally, by means of the SEQSCA technique, we are able
to provide statistically significant statements about the
interactions among the genes from a large set G by using
the GENIE or GI-GENIE algorithm, respectively, in a
sequential fashion.
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Table 3 Summary of the proposed SEQSCA-algorithm

Initialization:M(0) = 0N×N ;Ms=0 = 0NS×NS ; frequency counter n
(0)
i,j = 0

Repeat:

1: Select subset Gs of size NS from G ; draw each gene from G with equal
probability without replacement

2: Update: n(s+1)
i,j = n(s)

i,j + 1 for all i, j ∈ Gs

3: Estimate the DAG topology Es of set Gs using GENIE, GI-GENIE,
respectively; =⇒ Ms

4: Update reliability matrixM(s) according to Eq. (16)

7: Update iteration number: s ← s + 1

Until: s = S;

Set [M]i,j =
[
M(S)

]
i,j /n

(S)
i,j ∀i, j ∈ G

6 Simulation results
In this section, we first demonstrate the performance
of the GENIE algorithm and the GI-GENIE algo-
rithm with respect to conventional techniques for sim-
ulated data and further provide statistically signifi-
cant statements on the interactions among the genes
from a large set of genes based on real data using
the proposed SEQSCA technique. For the implementa-
tion of the proposed algorithms, we used the popular
CVX interface [31] along with the well-known MOSEK
solver [32].

6.1 Synthetic data results
We have generated the ideal SK phenotypes R(i) ∈
R for all i ∈ G as well as the ideal DK phenotypes
R(i, j) ∈ R for all i, j ∈ G : j > i accord-
ing to the model of [2] as displayed in Fig. 2, where
we have corrupted the ideal SK and DK phenotypes
by independently and identically distributed zero-mean
Gaussian noise with variance σ 2. Furthermore, the GI-
profile data ρ(i, j)∀i, j ∈ G : j > i has been gener-
ated on the basis of the SK and DK phenotypes. We
compare both the GENIE algorithm and the GI-GENIE
algorithm with the well-known GI-profile approach [2,
33], where the Pearson correlation between the GI-
profiles of genes i and j is computed and an edge in
the DAG is detected if the Pearson correlation is above
a pre-defined threshold tcorr, where the directionality is
inferred from the selection variable αk(i, j) correspond-
ing to the least mismatch model μk(i, j). Furthermore,
we compare our proposed methods with the solution of
program OGENIE without considering set L as a con-
straint, which means simply classifying each pair i, j
to the least mismatch scoring hierarchical relationship
class based on the SK and DK phenotypes R(i) and
R(i, j), respectively, without ensuring that the resulting
pattern of hierarchical relationship classes represents a
valid DAG.

In order to limit the Monte Carlo simulation time, we
consider a total of 10 genes amounting to 225 binary
variables and 2670 constraints for the GENIE algorithm
and 630 binary variables and 9645 constraints for the GI-
GENIE algorithm, respectively. For the GENIE method
without considering the consistency constraints in L, we
have 225 binary variables and 270 constraints. Since we
infer the edge orientation for the Pearson correlation-
basedmethod from the least mismatch scoring model, i.e.,
from the GENIE method without considering the consis-
tency constraints in L, we have 270 binary variables and
270 constraints.
In Fig. 7, we display the false detection percentage of

edges Ped in the detected DAG normalized to the true
number of edges |ED| as defined in Eq. (17) versus the
SNR.

Ped =
∣∣∣
(
ED

⋃
ÊD

)
\ ED

∣∣∣

|ED| (17)

In Fig. 8, we display the percentage of undetected edges
Pmis in the detected DAG normalized to the true number
of edges |ED| as defined in Eq. (18) versus the SNR, i.e.,

Pmis =
∣∣∣
(
ED

⋃
ÊD

)
\ ÊD

∣∣∣

|ED| (18)

Fig. 7 Ded versus SNR; tcorr = 0.6; 200 Monte Carlo runs; λd = 0.05,
λc = 1, λp = 0.8
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Fig. 8 Dmis versus SNR; tcorr = 0.6; 200 Monte Carlo runs; λd = 0.05,
λc = 1, λp = 0.8

Note that in multi-hypothesis testing problems, it is
common to view the diagnostic plots in Figs. 7 and 8
jointly to assess the quality of the proposed algorithms. In
Fig. 7, we observe that in the low SNR regime, the Pearson
correlation-based method performs best in terms of
false detection percentage of edges Ped; however, it fails
to improve performance with increasing SNR, because
for correct directionality information of the edges, this
approach relies on the hierarchical relationship classes
detected by method OGENIE without considering L. Espe-
cially in the high SNR regime, the proposed GENIE and
GI-GENIE methods clearly outperform program OGENIE
without the topology rule set L and approach and respec-
tively reach the performance of the Pearson correlation
method. However, the very good performance of the
Pearson correlation method in terms of false detection
percentage of edges Ped according to Eq. (17) comes at the
cost of a rather poor performance in terms of the percent-
age of undetected edges Pmis according to Eq. (18) as can
be seen in Fig. 8. In particular, in terms of the percent-
age of undetected edges Pmis, all of the proposed methods
outperform the Pearson correlation method. Note that in
the high SNR regime, the GI-GENIE of combining SK,
DK, and GI-profile data yields the best of both worlds,
i.e., it shows an equivalent performance as the Pearson

correlation method in terms of false detection percentage
of edges Ped, as well as an improvement of the strong per-
formance of the GENIEmethod in terms of the percentage
of undetected edges Pmis.

6.2 Real data results
Since discovering genetic interaction maps, i.e., DAGs,
for specific organisms is an ongoing field of research and
the knowledge on genetic interactions is far away from
being complete, there is generally no ground truth to
directly compare with, even not for yeast which is one of
the best understood organisms in this aspect. Therefore,
we base the evaluation of the detection performance of
the GENIE and the GI-GENIE methods on the biologi-
cal knowledge that genetic interactions are generally rare
and furthermore on the successful detection of known
interactions provided by the well-known yeast database
of [34]. We remark that to obtain statistically significant
statements about large sets of genes, we have applied
the proposed GENIE and GI-GENIE algorithms, respec-
tively, along with the SEQSCA technique presented above.
To demonstrate the benefit of using multiple data types
instead of only one data type, we compare the reliability
matrix results for SEQSCA and GI-GENIE with SEQSCA
and GENIE which only utilizes SK/DK data. We have
applied the abovementioned algorithms to the dataset
reported in [35] to obtain the reliability matrices for the
GENIE-based SEQSCA as well as for theGI-GENIE-based
SEQSCA, MG and MGI, respectively. The phenotypes
reported in [35] are colony size measurements normal-
ized to the wild-type size for each particular SK and DK,
respectively. Typically, the colony size serves as a proxy
for the fitness of the organism under study, which is the
actual cell function of interest that cannot be observed.
Therefore, the phenotypes in [35] are non-negative real
numbers within the range [0,Cmax], where Cmax denotes
the maximum size dictated by the experiment setup. For
computational reasons, we only considered the first 200
genes, i.e., |G| = 200, of the query gene list of [35]. Figure 9
shows MG obtained by the GENIE-based SEQSCA. In
Fig. 10, we have displayed MGI obtained by the GI-
GENIE-based SEQSCA. For both results, we decomposed
G into a sequence of S = 5e4 subsets Gs of equal size
Ns = 10. In Fig. 9, 78% of the gene pairs i, j considered
by MG of the GENIE-based SEQSCA interact with each
other with an empirical probability of less than 20%, i.e.,
[MG]i,j ≤ .2. Hence, the GENIE-based SEQSCA yields
approximately sparse results. This is a good performance
in terms of sparsity, since it is known from biology that
genetic interactions are generally very rare. However, we
can clearly see by the reliability matrix MGI that the
proposed GI-GENIE algorithm predicts genetic interac-
tions with a much lower frequency as compared to the
GENIE algorithm, which means a very good performance
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Fig. 9 Reliability matrixMG; S = 5e4 subsets considered; subset size
NS = 10

in terms of sparsity. We have computed the acceptance
ratio

	 = Nr
Nt

(19)

where Nr is the number of interactions found with high
significance ([MG]i,j , [MGI]i,j ≥ 1 − ε) and which are
deposited in the database of [34] as well. Nt is the total
number of highly significant interactions. Given the con-
firmed interactions at [34] for our set of genes under
study, we remark that evaluating the number of confirmed
interactions, that we have also found with our proposed
method, would not be a reasonable performance metric,
since [34] combines knowledge and experimental results
of numerous sources. In contrast to that, we only had
the dataset of [35] which only considers a particular phe-
notype, i.e., colony growth. As depicted in Table 4, we
have computed 	 for both the GI-GENIE-based SEQSCA
and the GENIE-based SEQSCA. It is obvious that the
GI-GENIE-based SEQCA outperforms the GENIE-based
SEQSCA, since the acceptance ratio for the GI-GENIE-
based SEQSCA is significantly higher than the one of the
GENIE-based SEQSCA.

Fig. 10 Reliability matrixMGI; S = 5e4 subsets considered; subset size
NS = 10; λd = 1e3, λc = 1, λp = 0.85

7 Conclusions
In this paper, we have considered the problem of learn-
ing the interactions between genes in a genetic network.
We have proposed the GENIE algorithm and the GI-
GENIE algorithm to reconstruct the DAG underlying the
observed data. The GENIE method is purely based on SK
and DK data whereas the GI-GENIE method combines
SK and DK data with GI-profile data in order to compute
an estimate of the true DAG topology. In Section 5, we
have presented the SEQSCA technique in order to obtain
statistically significant statements about the interactions
among a large set of genes under study. Furthermore, we
have shown by simulations that the GI-GENIE algorithm
outperforms the conventional techniques and the GENIE
algorithm due to the combination of multiple data types,
i.e., SK/DK and GI-profile data. Finally, based on the
SEQSCA technique, we have presented real data results
for the GENIE and the GI-GENIE algorithm, respectively,

Table 4 Acceptance ratios; ε = 0.05

Method: 	 (%)

SEQSCA and GENIE 53

SEQSCA and GI-GENIE 74
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where we have confirmed that the GI-GENIE method
outperforms the GENIE method.

Endnote
1 In a discrete optimization context, the class-selection

variables defined in (3) are denoted as SOS-1 type vari-
ables. However, for the sake of readability, we will mostly
omit this optimization context-based annotation and refer
to the variables defined in (3) as class-selection variables.
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