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Abstract

In systems biology, experimentally measured parameters are not always available, necessitating the use of
computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first
determine which parameters can be estimated for a given model and measurement set. This is done with
parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue
developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of
an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more
common observability-based method which has inherent limitations. It also introduces a variable step size based
on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12
parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times.
Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for
comparison.

1. Introduction
The focus of systems biology is to study the dynamic,
complex and interconnected functionality of living
organisms [1]. To have a systems-level understanding of
these organisms, it is necessary to integrate experimental
and computational techniques to form a dynamic model
[1,2]. One such approach to dynamic models is the
modeling of metabolic fluxes by their underlying enzy-
matic reaction rates. These enzymatic reaction rates, or
enzyme kinetics, are described by a kinetic rate law. Dif-
ferent rate laws may be used, matching the specific
behaviour of the chemical reaction that is catalysed by
the enzyme to the most appropriate rate law. These
kinetic rate laws are formulated with mathematical func-
tions of metabolite concentration(s) and one or more
kinetic parameters. In combination with the stoichiome-
try of the metabolism, these kinetic rate laws define the
function of the cell. In order to properly describe the
dynamics, it is required to have both an accurate and a
complete set of parameter values that implement these

kinetic rate laws. Owing to various limitations in wet lab
experiments, it is not always possible to have a mea-
sured value for all the required parameters. In these
cases, it is necessary to apply computational approaches
for the estimation of these unknown parameters.
In the past few years, increasing research has been

made on the application of several optimization techni-
ques towards parameter estimation in systems biology.
These include nonlinear least square (NLSQ) fitting [3],
simulated annealing [4] and evolutionary computation
[5]. More recently, kinetic modelling has been formu-
lated as a nonlinear dynamic system in state-space form,
where the parameter estimation is addressed in the fra-
mework of control theory. One of the most widely used
methods in control theory for parameter estimation is
the Kalman filter [2]. However, the Kalman filter is
designed for inference in a linear dynamic system, and
subsequently gives inaccurate results when applied to
nonlinear systems. Instead, a number of extensions to
the Kalman filter have been proposed to deal with non-
linear systems. Amongst those extensions, the most
widely used are the extended Kalman filter (EKF) [1]
and the unscented Kalman filter (UKF) [6,7]. At the
core of the UKF is the unscented transformation (UT)
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which operates directly through a nonlinear transforma-
tion, instead of relying on analytical linearization of the
system (as performed by EKF) [7]. This nonlinear trans-
formation gives the UKF a distinct computational
advantage over the EKF. Unlike the linearization per-
formed by the EKF, the UT does not require the calcu-
lation of partial derivatives. Furthermore, the UKF has
the accuracy of a second-order Taylor approximation,
while the EKF has just a first-order accuracy [7]. Over-
all, the UKF has been found to be more robust and con-
verges faster than the EKF due to increased time update
accuracy and improved covariance accuracy [8].
Nevertheless, parameter estimation is highly dependent

on the availability and quality of the measurement data.
Owing to the lack of measurement data collected from
wet lab experiments, it is difficult to obtain reliable esti-
mates of unknown kinetic parameter values. As a result,
it is crucial to be able to determine the estimability of the
model parameters from the available experimental data.
Parameter identifiability tests are carried out to find out
the estimable parameters of the model using the available
experimental data and to rank these parameters based on
how sensitive the model is with respect to a change in
these parameters. The rank is directly proportional to the
impact that the corrseponding parameter has on the sys-
tem output and its ability to capture the important char-
acteristics of the system [9]. In this article, we
investigated parameter identifiability using a sensitivity-
based orthogonal identifiability algorithm proposed by
Yao et al. [10] with the UKF as the method for parameter
estimation in a nonlinear biological model.
In the Kalman filter method, identifiability is

addressed with the view of observability [2]. A system is
said to be observable if the initial state can be uniquely
identified from the output data at any given point in
time [11]. However, most observability analysis methods
work by first calculating an analytical solution of the
system, which is not possible if the system is consider-
ably large and nonlinear. The novelty of this study lies
in the fact that we propose to embed a sensitivity-based
method for identifiability analysis into the UKF during
the estimation of the parameter. The central difference
(CD) method was used to calculate the sensitivity coeffi-
cient, where the step size is taken as the square root of
the variance generated by the UKF at each step of its
iteration. For the implementation, testing and validation
of these methods, we have taken the sucrose accumula-
tion in the sugar cane culm model published by Rohwer
et al. [12].

2. Methods
2.1. Problem statement
In this article, the biological model is described as a
state-space model which is a convenient way to describe

a nonlinear system in terms of first-order differential
equations. The model can be represented as

Ẋ = f (X, θ , t) , X(t0) = X0 (1)

where f is the nonlinear function describing the reac-
tions, each of which is made up of the sum or difference
of individual rate laws (see Additional file 1, Supplemen-
tary data). The vector X is the state vector of the model,
values of which are the metabolite concentrations, and
X0 is the initial state vector at time t0. The vector θ con-
tains the unknown rate coefficients, such as Michaelis-
Menten parameters, which we want to estimate. As the
parameters are constant, it is possible to construct an
augmented state vector by treating θ as additional state
variables with zero rate of change, θ̇ = 0 . The output
vector Y is the output signal vector, or the vector of the
quantities that can be measured from biological experi-
ments,

Y = g(X) (2)

This output signal is related to the state through a
function g that encodes the relationship between the
state of the system, X, and the measurement data at any
given time. Having the measurement data, we try to
estimate the parameter values by minimizing the dis-
tance between the measured data (actual) and the model
data (estimated).
Parameter identifiability attempts to answer the ques-

tion of whether or not the parameters of a given model
can be uniquely identified with the given level of experi-
mental data. Only if identifiability can be assured for the
combined set of model parameters and measurement
data, is it then reasonable to continue the estimation
process. In this article, we simulate the measurement
data from the model. This synthetic data is derived by
combining the simulated data with random noise to
develop a realistic experimental dataset [13].
Several theories of identifiability analysis exist, the

most widely applied of which are introduced, and one of
those is chosen for evaluation. A model is globally iden-
tifiable if a unique value can be found for each of the
model parameters that reproduce the experimental data.
On the other hand, if a finite number of sets of para-
meter values can be found, which reproduce the experi-
mental data, then the model is called locally identifiable.
Finally, the model is said to be unidentifiable if there
exist an infinite number of possible parameter sets that
can reproduce the experiment.
Two classes of identifiability analysis arise depending

on the availability of prior information on the parameter
data. The first is structural identifiability analysis and
the second is posterior identifiability analysis [14]. For
structural identifiability analysis, no prior information
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about the parameter values are required, whereas for
posterior identifiability analysis prior information about
the parameter values are needed. On the other hand,
structural identifiability analysis is highly restricted to
either linear models or for the nonlinear case, small
models with less than ten states and parameters [15].
For our analysis, we used a posterior identifiability
approach, specifically local at-a-point identifiability (a
specific method of locally identifiable modelling [14]).
For large nonlinear models, posterior identifiability

methods are feasible. Yao et al. [10] developed an orthogo-
nal-based parameter identifiability method using a scaled
sensitivity matrix. Jacquez et al. [16] developed a method
based on correlation, and Degenring et al. [17] developed
a method based on principal component analysis. All of
these methods are local at-a-point identifiability analysis
methods and perform similarly with nonlinear biological
models [14]. For our approach, we have chosen the ortho-
gonal-based method because of its ease of implementation
and straightforward analysis. We applied this orthogonal
method of parameter identifiability to determine the set of
identifiable parameters and then applied the UKF to per-
form the estimation of these unknown parameters.

2.2. Unscented Kalman filter
The UKF is based on a statistical linearization techni-
que. Starting with a nonlinear function of random vari-
ables, a linear regression between n points is drawn
from the prior distribution of the random variables.
This technique gives a more accurate result than analy-
tical linearization techniques, such as Taylor series line-
arization, as it considers the spread of the random
variables [18].
A Kalman filter is composed of a number of equations

which estimate the state of a process by minimizing the
covariance of the estimation error. Kalman filters work
in a predictor-corrector style, whereby they first predict
the process state and covariance at some time using
information from the model (prediction) and then
improve this estimate by incorporating the measurement
data (corrector). UKF is itself an extension of the UT
[7], a deterministic sampling technique which imple-
ments a native nonlinear transformation to derive the
mean and covariance of the estimates. This transformed
mean and covariance are then supplied to the Kalman
filter equations to estimate the state variables.
In order to implement the UKF for parameter estima-

tion, we use the discrete time description of the contin-
uous time process. The system at discrete time points
t1,...,tk is described as

X(tk+1) = f (X(tk)) + w

Y(tk) = h(X(tk)) + v
(3)

where f, X and Y are as described in (1) and (2), h
describes an incomplete and noisy observation model,
and both w and v are uncorrelated white noises of the
system and measurement model, respectively. During
the UT, sigma points, a minimal set of sample points
about the mean, are calculated to capture the statistics
of the state model. The sigma points are calculated
according to the following equation:

Xi =
{
x̄ x̄ + γ

√
Px x̄ − γ

√
Px

}
(4)

where γ =
√
L + λ , L is the dimension of the augmen-

ted state; l is the composite scaling parameter; and Px is
the system uncertainty. The sigma points are then trans-
formed through the nonlinear function f, Yi = f(Xi). The
mean and covariance are then calculated according to
Equation 5:

ȳ =
∑

Wm
i Yi

Py =
∑

Wc
i

(
Yi − ȳ

)(
Yi − ȳ

)T (5)

where Wm
i and WC

i are the corresponding weights to

calculate, respectively, the mean and covariance of the
state. The transformed mean and covariance are then
fed into the standard Kalman filter equations to make
the process estimation.

2.3. Orthogonal-based method for parameter
identifiability
The orthogonal method for parameter identifiability
proposed by Yao et al. [10] is a method based on sensi-
tivity analysis. Sensitivity analysis is used for determin-
ing the relationship between a change in the parameters
and the corresponding change to the system. Sensitivity
coefficients, the elements of the sensitivity matrix, are
calculated through the partial derivative of the model
states with respect to the model parameters. In the
orthogonal method, this sensitivity coefficient is calcu-
lated local at-a-point. Identifiability analysis describes
two things, first which of the parameters have high sen-
sitivity to the system output and then which of the para-
meters are linearly independent. The method iterates
over the columns of the sensitivity matrix Z to select
the column with the highest sum of squared value.
Since each column corresponds to a single parameter,
this corresponds to the parameter that has the highest
impact on the model output. This column is added to
the matrix XL (L being the iteration number), in the
order of the highest to the lowest sensitivity. To make
the adjustment of the net influence of each of the
remaining parameters on the already selected para-
meters, all of the original columns of Z are being
regressed on the column associated with the most
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estimable parameter (denoted ẐL ). A residual matrix RL

is calculated to measure the orthogonal distance
between Z and the regression matrix ẐL . The column
having the highest sum of squared value in the residual
matrix RL is chosen to be the next most estimable para-
meter. The steps are repeated until a specific cutoff
value of RL is reached or until all the parameters have
been selected as identifiable. The algorithm is as follows:

1. Calculate the sensitivity coefficient matrix Z.
2. Calculate the sum of squared values of the Z
matrix and choose the highest column to be the
most estimable one.

3. Mark the column as XL where L ∈ {
1, . . . ,np

}
.

4. Calculate an orthogonal projection ẐL for the col-
umn that exhibits the highest independence to the
vector space V spanned by XL.

ẐL = XL(XT
LXL)−1XT

LZ

5. The residual matrix, RL = Z − ẐL , is calculated as
a measure of independence.
6. The sum of squares values is calculated for each
column of the RL matrix, resulting in the vector CL,
and the column corresponding to the largest sum of
squares is chosen for the next estimable parameter.
7. Select the corresponding column in Z and aug-
ment the matrix XL by marking the new column.
8. Iterate steps 4-7 until the cutoff value is reached
or until all of the parameters are selected to be
identifiable.

The sensitivity matrix Z is defined as

Z =
∂X
∂θ

=

⎡
⎢⎢⎢⎣

z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zn1 zn2 · · · znn

⎤
⎥⎥⎥⎦ (6)

An analytical solution of the state-space equation is
very rare for nonlinear biological systems. As a result,
the matrix Z must be solved numerically for each itera-
tion. To do this, the CD method was applied. This
method uses the finite difference approximation, where
the sensitivity coefficient zi,j is calculated from the dif-
ference of the perturbed solutions around the nominal
value.

zi,j(t) =
xi(θj + �θj, t) − xi(θj − �θj, t)

2�θj
(7)

In this approach, the choice of step size, Δθj, is critical
as numerical values obtained with this method depend
highly on the value of the step size. The square root of
the variance generated by UKF at each step of its itera-
tion was used as the step size, which gives

�θj =
√
Pxj,j [19]. This choice is made to ensure that the

step size remains variable with each recursive step, as
well as within the feasible parameter range of the per-
turbed system. It has been shown that the approxima-
tion error gets smaller linearly as step size becomes
smaller [20]. Parameters are maintained within one stan-
dard deviation (the approximation error), and thus, they
have a higher probability in comparison to parameters
outside of this range. Furthermore, with each recursion
the availability of new information during the parameter
estimation in UKF correlates to a general decrease in
the uncertainty within the system [21], making the stan-
dard deviation a feasible choice for the step size.

3. Analysis
3.1. Model setup
The sucrose accumulation in sugar cane culm tissue was
chosen as the study model for both the identifiability
analysis and the parameter estimation. The model, the
identifiability analysis and the parameter estimation
were all implemented using MATLAB (R2009b) numeri-
cal toolkit.a All the parameter values are known a priori
[12]. The schematic diagram of the model is given in
Figure 1.
A set of ODEs are generated from the sugarcane

model to formulate a mathematical model of the net-
work. The system has five metabolites that are free to
change and three that remain fixed, with a total of 54
parameters. All the 54 known parameters were used
initially for developing the synthetic measurement data.
In testing both the identifiability analysis and the para-
meter estimation, 12 of these parameters have been
assumed to be unknown (see Table 1) and initialized to
random numbers between zero and one.

3.2. Results
We start with the ODEs by first integrating them over
the time interval [0 T] where T = 5000 with all the
known parameters to generate the synthetic measure-
ment time series data. We choose the final time point
to be the time when the system reaches its steady state.
The MATLAB function ode45 (a numerical Runge-
Kutta method for numerical integration) was used for
solving the ODE. The synthetic measurement data were
created through the inclusion of a small random uncor-
related white noise to the observation. During the simu-
lation, the measurement data are sampled at a fixed
interval of Δt = 0.2, to collect fixed time points.
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In order to make a fair comparison of the UKF to
other methods of parameter estimation, the identifiabil-
ity analysis was performed separately. This should not
affect the advantage of integration of identifiability with
estimation, but in fact detract from it, as it gives the
other estimation algorithms an effective headstart.
Therefore, we first performed the identifiability analy-

sis, to determine which parameters could be estimated.
The 12 parameters assumed to be ‘unknown’ were initi-
alized as previously described. The identifiability analysis
revealed that 10 out of the 12 parameters were identifi-
able (see Table 1). In the method proposed by Yao et al.
[10], heuristics were used for determining the condition
to stop the selection of identifiable parameters. We fol-
lowed the same procedure laid out in Yao et al. [10],
and found the condition for a reasonable stopping cri-
terion to be Max(CL) < 0.004.
The UKF parameter estimation algorithm was

repeated for 97 runs to provide statistics of the estima-
tion. In order to compare the parameter estimation

methods as these parameters have the least effect on the
system, we keep the nonidentifiable parameters fixed to
their known values [12]. In general, however, these para-
meters would not be known a priori. In these cases, we
would first try to resolve the parameter identifiability
through restructuring the model and, only as a last
resort, set them to fixed arbitrary values.
In all cases, the parameters are initialized to a small

random number between zero and one. Throughout the
simulation, the algorithm adjusts the parameter values
by adjusting the covariance matrix. This is performed by
comparing the measured data to the data generated
from the model. The results of the parameter estimation
are illustrated in Figure 2.
Though the method estimated most of the parameter

values with lower standard deviation, parameters,
Km6UDP and Km6Suc6P, show decidedly higher stan-
dard deviation. This high variation contradicts the eva-
luation of the identifiability analysis. One possible
explanation is that these two parameters have some sort
of a functional relationship (nonlinear) with other para-
meters. The orthogonal nature of the parameter iden-
tifiability approach proposed by Yao et al. can only deal
with collinearity. A second possible explanation could
be the local identifiability approach, as applied in this
study, which by definition only ensures that the system
is identifiable within a finite (but not unique) set of
points in the parameter space. Individual parameters
within this set could have a very large domain, resulting
in a large variation within the individual parameter, i.e.
the parameter is identifiable but poorly resolved.
The two parameters 4 (Ki4F6P) and 12 (Km11Suc)

were found to be nonidentifiable. This means that an
infinite number of possible solution sets could be found
when these parameters are included. The main reason
for this is that these parameters are somehow dependent
on the remaining parameters. In the case of Km11Suc,
an exhaustive functional analysis with each of the other
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Figure 1 Schematic diagram of the case study model–the sucrose accumulation in sugar cane culm tissue.

Table 1 Parameters chosen to be unknown, and their
corresponding rank, or position in the residual matrix

Parameter number Parameter name Identifiability rank

1 v1.Ki1Fru 8

2 v2.Ki2Glc 9

3 v3.Ki3G6P 6

4 v3.Ki4F6P Not Identifiable

5 v6.Ki6Suc6P 3

6 v6.Ki6UDPGlc 1

7 v6.Vmax6r 2

8 v6.Km6UDP 7

9 v6.Km6Suc6P 4

10 v6.Ki6F6P 5

11 v11.Vmax11 10

12 v11.Km11Suc Not identifiable

Parameters 4 and 12 have no rank, as they were found to be unidentifiable
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parameters individually found that Km11Suc has a
strong linear relationship with parameter Vmax11, as
illustrated in Figure 3. A similar analysis was unable to
find a simple relationship between Ki4F6P and any one
of the identifiable parameters.
To better gauge the parameter estimation of the UKF,

the ten estimable parameters were similarly determined
using a genetic algorithm (GA) and NLSQ. Both alterna-
tives were implemented in MATLAB, using the default
implementations and settings. A third alternative, simu-
lated annealing, was attempted using the implementa-
tion in Copasi. However, this method on its own failed
to produce usable parameters and required more than
an order of magnitude longer to run. As with the UKF,
97 repetitions were performed for each of these
methods.
The comparison of the parameter estimation methods

is presented in Table 2 and Figure 4. In each case, the
mean and standard deviation are calculated for the 97
repetitions, and are used for the comparison. Four

values are plotted for each parameter in the bar chart of
Figure 4. The first bar represents the actual value of the
parameter as determined in [12]. The remaining bars
represent the estimated values of the corresponding
parameter, from left to right, for the UKF, the GA and
the NLSQ methods. No one method correctly identifies
all the ten parameters; however, the UKF consistently
performs as good as or better than either GA or NLSQ.
Neither the GA nor the NLSQ performed well when

the parameter value fell below 1, which accounted for
six out of the ten parameters. In fact, with one excep-
tion (NLSQ parameter Ki3G6P), only the UKF was able
to consistently estimate smaller parameters. In fact the
GA seemed to have difficulties with any parameter too
far from 1, with all mean parameters falling between
0.85 and 1.04 with very small standard deviations. Simi-
lar to the GA, the NLSQ estimation shows very tight
results for the parameters with value 1 (standard devia-
tions < 0.01), and with the exception of the parameter
Ki3G6P, the standard deviations increase considerably as

Ki1Fru Ki2Glc Ki3G6P Ki6Suc6P Ki6UDPGlc Vmax6r Km6UDP Km6Suc6P Ki6F6P Vmax11
0

0.5

1

1.5
2

2.5

3

3.5

4

4.5
5

Parameter estimation result

Parameter Name

Pa
ra

m
et

er
va

lu
es

Figure 2 The mean of the estimated values of the ten identifiable parameters. The error bars indicated the standard deviation.
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Figure 3 Relationship between parameters Vmax11 and Km11Suc, via Vanted data alignment analysis.
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the parameter value differs from 1 (with five of the stan-
dard deviations exceeding 100% of the parameter value).
The UKF is more consistent throughout, estimating
both larger and smaller values with more consistent
standard deviations.

4. Conclusion
In order to develop dynamic models for systems biology,
it is necessary to have knowledge of the underlying
kinetic parameters for the system being modelled. Since
it is not always possible to have this knowledge directly
from experimental measurements, it is necessary to
develop a method to estimate these parameter values.
Furthermore, it is critical that we rely on the accuracy
of these estimated values. One step towards this is the
parameter identifiability which can be used to help
determine if there are sufficient measurement data with
which to identify the parameter(s).
In this article, we have proposed a method whereby

biological systems can be viewed as a state-space system,
in order to apply approaches from control theory, the

UKF, to parameter estimation. However, before
approaching the estimation problem, an identifiability
approach proposed by Yao et al. [10] was applied to
identify the parameters which cannot be uniquely esti-
mated, based on the model structure and the measure-
ment data. One of the benefits in integrating estimation
and identifiability is the reuse of the variance generated
by the UKF for the step size in the calculation of the
sensitivity coefficient for identifiability.
The UKF offers many desirable traits to biological

modelling, chief among them being a native nonlinear
transformation [22]. The UKF is thus able to overcome
one of the major bottlenecks in biological modelling, a
lack of experimentally measured parameters. The UKF
with identifiability analysis is particularly important in
the study of kinetic networks, as a large number of para-
meters might be unidentifiable as these networks increase
in size and complexity. Another aspect of the UKF that
lends itself to kinetic models is that UKF is a time-evolu-
tion algorithm. This means that the parameter estimation
with UKF is refined with each additional set of measure-
ments, making it especially successful at estimating bio-
chemical pathways with time series data.
In our future study, we intend to refine the methods

to better identify the functional relationship(s) between
parameters and quantify them. By applying the identifia-
bility analysis, we will estimate the independent para-
meters and determine the dependent ones from this
quantification. One other thrust of research will be in
generalizing the stopping criterion for identifiability ana-
lysis. For this test model, it was found that Max(CL) <
0.004 provided the desired stopping criterion, but it is
unknown if this is a model- or data-specific value.

Endnotes
aMatlab source for implementation can be made avail-
able upon request.

Table 2 Comparison of actual parameter values and the
parameter estimation results using UKF, GA and NLSQ

Parameter
name

Actual
value

UKF GA Nonlinear
LSQ

Mean SD Mean SD Mean SD

v1.Ki1Fru 1.00 1.06 0.15 0.97 0.15 0.99 0.007

v2.Ki2Glc 1.00 1.21 0.22 1.00 0.09 0.99 0.001

v3.Ki3G6P 0.10 0.40 0.36 0.85 0.69 0.10 0.010

v6.Ki6Suc6P 0.07 0.13 0.05 0.94 0.72 1.35 2.135

v6.Ki6UDPGlc 1.40 3.56 1.29 0.97 0.74 1.29 0.305

v6.Vmax6r 0.20 0.21 0.23 0.86 0.56 3.27 4.932

v6.Km6UDP 0.30 1.00 1.23 0.90 0.55 0.89 1.747

v6.Km6Suc6P 0.10 1.32 1.56 0.88 0.62 0.78 1.775

v6.Ki6F6P 0.40 0.15 0.05 1.02 0.67 1.40 3.875

v11.Vmax11 1.00 0.31 0.18 1.04 0.29 0.99 0.001

Ki1Fru Ki2Glc Ki3G6P Ki6Suc6P Ki6UDPGl
c

Vmax6r Km6UDP Km6Suc6P Ki6F6P Vmax11
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Figure 4 Comparison of the actual value of the identifiable parameters to the results of the three-parameter-estimation methods. The
error bars represents the standard deviation.
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Additional material

Additional file 1: Supplementary Data. Rate laws used in this model,
as developed by Rohwer et al. [12].
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